Open Access
MATEC Web Conf.
Volume 244, 2018
Innovative Technologies in Engineering Production (ITEP’18)
Article Number 01027
Number of page(s) 7
Section Progressives Technologies
Published online 05 December 2018
  1. J. Brethé, D.Lefebvre, Risk ellipsoids and granularity ration for industrial robot. International Journal of Factory Automation Robotics and Soft computing, 2, 93-101 (2007) [Google Scholar]
  2. I. Kuric, V. Bulej, M. Sága, P. Pokorný, Development of simulation software for mobile robot path planning within multilayer map system based on metric and topological maps. International journal of advanced robotic systems, 14, (2017) [Google Scholar]
  3. B. Mičieta, M. Edl, M. Krajčovič, Ľ. Dulina, P. Bubeník, L. Ďurica, V. Biňasová, Delegate MASs for Coordination and Control of One-Directional AGV Systems: A Proof-of-Concept. International journal of advanced manufactur. technology, 94, 415-431 (2018) [Google Scholar]
  4. W. S. Newman, C. E. Birkhimer, R. J. Horning, A. T. Wilkey, Calibration of a Motoman P8 robot based on laser tracking. Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on. 4, 3597-3602 (2000) [CrossRef] [Google Scholar]
  5. M. Císar, I. Zajačko, I. Kuric, Diagnostics based on poositioning performance during circular motion. Inżynier XXI wieku: projektujemy przyszłość. 536-542 (2016) [Google Scholar]
  6. A. Sapietová, M. Sága, I. Kuric, Š. Václav, Application of optimization algorithms for robot systems designing. International Journal of Advanced Robotic Systems, 15 (2018) [Google Scholar]
  7. V. Tlach, M. Císar, I. Kuric, Zajačko, Determination of the Industrial Robot Positioning Performance. MATEC Web of Conferences. 137 (EDP Sciences, 2017) [Google Scholar]
  8. A. Nubiola, I. A. Bonev, Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing, 29, 236-245 (2013) [CrossRef] [Google Scholar]
  9. M. Abderrahim, A. Khamis, S. Garrido, L. Moreno, Accuracy and Calibration Issues of Industrial Manipulators. Industrial Robotics-Programming, Simulation and Applications, 131-146 (2007) [Google Scholar]
  10. J. Józwik, D. Ostrowski, P. Jarosz, D. Mika, Industrial robot repeatability testing with high speed camera Phantom v2511. Advances in Science and Technology Research Journal, 10, 86-96 (2016) [CrossRef] [Google Scholar]
  11. D. Kumičakova, V. Tlach, M. Cisar. Testing the performance characteristics of manipulating industrial robots. Transactions of the VŠB - Technical University of Ostrava: mechanical series, 62, 39-50 (2016) [Google Scholar]
  12. A. Şirinterlikçi, M. Tiryakioǧlu, A. Bird, A. Harris, K. Kweder, Repeatability and Accuracy of an Industrial Robot: Laboratory Experience for a Design of Experiments Course. Technology Interface Journal, 9 (2009) [Google Scholar]
  13. Charu C Aggarwal, Neural Networks and Deep Learning. Springer, 2018 [CrossRef] [Google Scholar]
  14. Ragav V., Baoxin L., Convolutional Neural Networks in Visual Computing. CRC Press, 2017 [Google Scholar]
  15. A. Nubiola, M. Slamani, I. A. Bonev, A new method for measuring a large set of poses with a single telescoping ballbar. Precision Engineering, 37, 451-460 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.