Open Access
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
Article Number 05003
Number of page(s) 6
Section Self-Sensing, Monitoring and Inspection of Concrete Structures and Infrastructure
Published online 28 April 2023
  1. T.R. Naik, Sustainability of Concrete Construction, Pract. Period. Struct. Des. Constr. 13 (2008) 98–103. [CrossRef] [Google Scholar]
  2. Global Energy Review 2020, OECD, 2020. [Google Scholar]
  3. G.S. Duffó, S.B. Farina, Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures, Constr. Build. Mater. 23 (2009) 2746–2751. [CrossRef] [Google Scholar]
  4. J.M. Gandía-Romero, R. Bataller, P. Monzón, I. Campos, E. García-Breijo, M. Valcuende, J. Soto, Characterization of embeddable potentiometric thickfilm sensors for monitoring chloride penetration in concrete, Sensors Actuators, B Chem. 222 (2016) 407–418. [CrossRef] [Google Scholar]
  5. M. Alcañiz Fillol, Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario, Universitat Politécnica de Valéncia, 2011. [Google Scholar]
  6. J.M. Gandía Romero, Sensores electroquímicos aplicados al estudio de la corrosión en estructuras de hormigón armado, Universitat Politécnica de Valéncia, 2014. [Google Scholar]
  7. K. Tutti, Corrosion of steel in concrete, Swedish Cement and Concrete Institute, Stokholm, 1982. n-of-steel-in-concrete. [Google Scholar]
  8. C. Desmettre, J.P. Charron, Water permeability of reinforced concrete with and without fiber subjected to static and constant tensile loading, Cem. Concr. Res. 42 (2012) 945–952. [CrossRef] [Google Scholar]
  9. J.E. Ramón Zamora, Sistema de Sensores Embebidos para Monitorizar la Corrosión de Estructuras de Hormigón Armado. Fundamento, Metodología y Aplicaciones., Universitat Politécnica de Valéncia, 2018. [Google Scholar]
  10. N. De Belie, E. Gruyaert, A. Al-Tabbaa, P. Antonaci, C. Baera, D. Bajare, A. Darquennes, R. Davies, L. Ferrara, T. Jefferson, C. Litina, B. Miljevic, A. Otlewska, J. Ranogajec, M. Roig-Flores, K. Paine, P. Lukowski, P. Serna, J.M. Tulliani, S. Vucetic, J. Wang, H.M. Jonkers, A Review of Self-Healing Concrete for Damage Management of Structures, Adv. Mater. Interfaces. 5 (2018) 1–28. [CrossRef] [Google Scholar]
  11. A. Negrini, M. Roig-Flores, E.J. Mezquida-Alcaraz, L. Ferrara, P. Serna, Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability, MATEC Web Conf. 289 (2019) 01006. [CrossRef] [EDP Sciences] [Google Scholar]
  12. G. Anglani, J.-M. Tulliani, P. Antonaci, Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading, Materials (Basel). 13 (2020) 1149. [CrossRef] [Google Scholar]
  13. G. Anglani, T. Van Mullem, J.-M. Tulliani, K. Van Tittelboom, N. De Belie, P. Antonaci, Durability of self-healing cementitious systems with encapsulated polyurethane evaluated with a new pre-standard test method, Mater. Struct. 55 (2022) 143. [CrossRef] [Google Scholar]
  14. T. Van Mullem, G. Anglani, M. Dudek, H. Vanoutrive, G. Bumanis, C. Litina, A. Kwiecień, A. Al-Tabbaa, D. Bajare, T. Stryszewska, R. Caspeele, K. Van Tittelboom, T. Jean-Marc, E. Gruyaert, P. Antonaci, N. De Belie, Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules, Sci. Technol. Adv. Mater. 21 (2020) 661–682. [CrossRef] [Google Scholar]
  15. Y. Guo, R.G. Compton, A bespoke chloride sensor for seawater: Simple and fast with a silver electrode, Talanta. 232 (2021) 122502. [CrossRef] [Google Scholar]
  16. P. Norberg, Electrical measurement of moisture content in porous building materials, Durab. Build. Mater. Components. 8 (1999) 1030–1039. [Google Scholar]
  17. F. Winquist, P. Wide, I. Lundström, An electronic tongue based on voltammetry, Anal. Chim. Acta. 357 (1997) 21–31. [CrossRef] [Google Scholar]
  18. A. Martinez Ibernon, I. Gasch, J.M.G. Romero, J. Soto, Hardened Concrete State Determination System Based on a Stainless Steel Voltammetric Sensor and PCA Analysis, IEEE Sens. J. 22 (2022) 12947–12958. [CrossRef] [Google Scholar]
  19. D. Ballabio, A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure, Chemom. Intell. Lab. Syst. 149 (2015) 1–9. [CrossRef] [Google Scholar]
  20. P. Rodríguez, E. Ramírez, S. Feliu, J.A. González, W. López, Significance of Coplanar Macrocells to Corrosion in Concrete-Embedded Steel, CORROSION. 55 (1999) 319–325. [CrossRef] [Google Scholar]
  21. I. Campos Sánchez, Sensores electroquímicos tipo lengua electrónica voltamétrica aplicados al control medioambiental y a la industria alimentaria, Universitat Politécnica de Valéncia, 2013. [Google Scholar]
  22. H. Ji, W. Qin, Z. Yuan, F. Meng, Qualitative and Quantitative Recognition Method of Drugproducing Chemicals Based on SnO2 Gas Sensor With Dynamic Measurement and PCA Weak Separation, Sensors Actuators B Chem. 348 (2021) 130698. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.