Open Access
Issue
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
Article Number 05002
Number of page(s) 6
Section Self-Sensing, Monitoring and Inspection of Concrete Structures and Infrastructure
DOI https://doi.org/10.1051/matecconf/202337805002
Published online 28 April 2023
  1. B. Han, L. Zhang, J. Ou, Electrically Conductive Concrete, Smart and Multifunctional Concrete Toward Sustainable Infrastructures, pp. 247–259, (2017). [Google Scholar]
  2. B. Han, S. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review, Measurement: Journal of the International Measurement Confederation, 59, 110–128 (2015). [CrossRef] [Google Scholar]
  3. S. Erdema, S. Hanbaya, M. A. Blanksonb, Selfsensing damage assessment and image-based surface crack quantification of carbon nanofibre reinforced concrete, Construction and Building Materials 134 520–529 (2017). [CrossRef] [Google Scholar]
  4. S. Gupta, J. G. Gonzalez, K. J. Loh, Self-sensing concrete enabled by nano- engineered cementaggregate interfaces, Structural Health Monitoring 2017, Vol. 16 (3) 309–323 (2017). [Google Scholar]
  5. R. N. Howser, H. B. Dhonde, Y. L. Mo, Selfsensing of carbon nanofiber concrete columns subjected to reversed cyclic loading, Smart Mater. Struct. 20 085031 (2011). [CrossRef] [Google Scholar]
  6. B. Han, K. Zhang, T. Burnham, E. Kwon, X. Yu, Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection, Smart Mater. Struct. 22 015020 (2013). [CrossRef] [Google Scholar]
  7. H. Ceylan, K. Gopalakrishnan, P. Taylor, P. Shrotriya, S. Kim, A Feasibility Study on Embedded Micro- Electromechanical Sensors and Systems (MEMS) for Monitoring Highway Structures, In Trans Project Reports. 63 (2011). [Google Scholar]
  8. M. A. Climent, J. Carmona, P. Garces, Graphite-Cement Paste: A New Coating of Reinforced Concrete Structural Elements for the Application of Electrochemical Anti-Corrosion Treatments. Coatings, 6 (3), 32. (2016). [CrossRef] [Google Scholar]
  9. A. Peyvandi, P. Soroushian, A. M. Balachandra, K. Sobolev, Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets, Constr. Build. Mater. 47 111–117 (2013). [CrossRef] [Google Scholar]
  10. A. S. El-Dieb, M.A. El-Ghareeb, M.A.H. Abdel-Rahman, E.S.A. Nasr, Multifunctional electrically conductive concrete using different fillers, J. Build. Eng. 15 61–69 (2018). [CrossRef] [Google Scholar]
  11. J. Wu, J. Liu, F. Yang, Three-phase composite conductive concrete for pavement deicing, Constr. Build. Mater. 75 129–135 (2015). [CrossRef] [Google Scholar]
  12. J. Wei, Q. Zhang, L. Zhao, L. Hao, Z. Nie, Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites, Ceram. Int. 43 (14) (2017) 10763–10769 (2017). [CrossRef] [Google Scholar]
  13. J. Wei, L. Zhao, Q. Zhang, Z. Nie, L. Hao, Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting, Energ. Buildings. 159 (2018) 66–74 (2018). [CrossRef] [Google Scholar]
  14. P. H. Chen, D. D. L. Chung, Comparative evaluation of cement-matrix composites with distributed versus networked exfoliated graphite, Carbon. 63 446–453 (2013). [CrossRef] [Google Scholar]
  15. H. Cui, W. Liao, X. Mi, T. Y. Lo, D. Chen, Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials, Energ. Build. 105 273–284 (2015). [CrossRef] [Google Scholar]
  16. H. Zhang, F. Xing, H.Z. Cui, D. Z. Chen, X. Ouyang, X. Z. Xu, J. X. Wang, Y. T. Huang, J. D. Zuo, J. N. Tang, A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties, Appl. Energy 170 130–139 (2016). [CrossRef] [Google Scholar]
  17. S. Muthusamy, S. Wang, D. D. L. Chung, Unprecedented vibration damping with high values of loss modulus and loss tangent, exhibited by cement-matrix graphite network composite, Carbon. 48 (5) 1457–1464 (2010). [CrossRef] [Google Scholar]
  18. J. Le, S. Pang, H. Du, Using graphite nanoplatelet reinforced cementitious composites as a selfsensing material: theory and experiments, in: EMI 2013 Conference, pp. 4–7 (2013). [Google Scholar]
  19. H. Du, S. Pang, S. Quek, Transport properties of cement mortar with graphite nanoplatelet, in: ICCE-20, pp. 22–8 (2012). [Google Scholar]
  20. I. Papanikolaou, C. Litina, A. Zomorodian, A. Al-Tabbaa, Effect of Natural Graphite Fineness on the Performance and Electrical Conductivity of Cement Paste Mixes for Self-Sensing Structures, Materials, 13(24), 5833 (2020). [CrossRef] [Google Scholar]
  21. D. Wang, Q. Wang, Z. Huang, Investigation on the poor fluidity of electrically conductive cementgraphite paste: Experiment and simulation, Materials & Design, Volume 169, 5 May 2019, 107679 (2019). [CrossRef] [Google Scholar]
  22. S. Liang, H. Du, N. Zou, Y. Chen, Y. Liu, Measurement and simulation of electrical resistivity of cement-based materials by using embedded four-probe method, Construction and Building Materials. 357 129344 (2022). [CrossRef] [Google Scholar]
  23. Z. Chen, K. Li, M. Omidvar, M. Iskander, Guidelines for DIC ingeotechnical engineeringresearch, International Journal of Physical Modelling in Geotechnics, 17(1), 3–22 (2017). [CrossRef] [Google Scholar]
  24. S. A. Stanier, J. Blaber, W. A. Take, D. J. White, Improved image-based deformation measurement for geotechnical applications. Canadian Geotechnical Journal, (2015). [Google Scholar]
  25. D. J. White, W. Take, M. Bolton, Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry. Géotechnique, 53 (7): 619–631. doi:10.1680/geot.2003.53.7.619 (2003). [CrossRef] [Google Scholar]
  26. A.O. Monteiro, P.B. Cachim, P.M.F.J. Costa, Selfsensing piezoresistive cement composite loaded with carbon black particles, Cement and Concrete Composites. Volume 81, Pages 59–65 (2017). [CrossRef] [Google Scholar]
  27. W. Dong, W. Li, Y. Guo, K. Wang, D. Sheng, Mechanical properties and piezoresistive performances of intrinsic graphene nanoplate/cement-based sensors subjected to impact load, Construction and Building Materials. Volume 327, 126978 (2022). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.