Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 6 | |
Section | Self-Sensing, Monitoring and Inspection of Concrete Structures and Infrastructure | |
DOI | https://doi.org/10.1051/matecconf/202337805003 | |
Published online | 28 April 2023 |
Initial proposal of a smart cement-based material to enhance the service-life of reinforcement concrete structures
1
IDM - Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Camino de Vera s/n, Valencia
2
Politecnico di Torino, Department of Structural, Geotechnical and Building Engineering, Corso Duca degli Abruzzi 24, Turin 10129, Italy
The sustainable development of societies can be pursued by simultaneously avoiding the depletion of materials and resources and reducing the greenhouse gases emissions, with related climatic change effects. In order to get this, the extension of structures service-life plays a significant role in saving natural resources, decreasing the overall anthropogenic carbon-footprint, and reducing building and demolition wastes. In order to achieve such prolongation of structures service-life, one of the most promising approaches is the development of Smart Structures. These are defined as structures that are able to self-sense some external stimuli such as stress or temperature variations, and internal conditions such as chloride penetration, concrete carbonatation, etc. Consequently, ongoing damage phenomena can be detected promptly, thus allowing to implement suitable countermeasures in the most efficient way. Smart Structures can also process the information and respond autonomously in real time by using smart materials technologies such as self-healing technology. In this study we propose a preliminary version of a smart material system with self-healing and sensing properties, to demonstrate its effectiveness at a proof of concept level. The effectiveness of an active, capsule-based self-healing system in blocking chloride penetration through the crack and the effectiveness of voltametric Ag sensors in detecting the presence of chlorides were investigated experimentally. High-performance cement mortar was chosen as the material to be studied, in order to ensure that optimal behaviour could be observed in non-cracked conditions.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.