Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 6 | |
Section | Cementitious Grouting Technologies and Corrosion Inhibition Solutions of Reinforcement Steel | |
DOI | https://doi.org/10.1051/matecconf/202337807004 | |
Published online | 28 April 2023 |
Large-Scale Laboratory Trials of Self-Healing Technologies
Department of Engineering, University of Cambridge, Cambridge, UK
* Corresponding author: sr973@cam.ac.uk
Prolonging the life of the reinforced concrete structure is the most promising solution to reduce the carbon emissions from concrete. To achieve that, the structure should be protected from crack formation, which acts as an easy pathway for deleterious agents. Self-healing technologies are intended to provide long-term resilience against cracking due to various deterioration processes. Technologies that performed well in small, laboratory-scale studies are taken to the next level to assess their performance on a larger scale and monitored using various NDT equipment. A 1m long beam with a cross-section (140×120 mm) was cast with two rebars – one with a cover depth of 50 mm from the top and another with a cover depth of 20 mm from the bottom. The mix design consists of CEM IIIA (50 OPC: 50 Slag) cement and 30% lightweight aggregate as a replacement for coarse aggregate. At 28 days of curing, the concrete beams are subjected to accelerated corrosion (by applying a voltage to the bottom rebar) to induce internal cracking. Once internal cracking is induced, the beams are subjected to another 28 days under water for healing. The performance of the beams is monitored via ultrasonic pulse velocity and half-cell potential before and after voltage application. This paper shows the preliminary results and the self-healing efficiency and corrosion resistance of these beams are continuously being monitored under severe chloride conditions to predict the long-term performance.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.