Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 6 | |
Section | Self-Sensing, Monitoring and Inspection of Concrete Structures and Infrastructure | |
DOI | https://doi.org/10.1051/matecconf/202337805004 | |
Published online | 28 April 2023 |
Initial proposal of a novel voltammetric sensor system for the detection of concrete carbonation by means of PCA model
1
IDM - Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico. Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España
2
Departamento de Construcciones Arquitectónicas, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España
* E-mail: anmarib@arqt.upv.es
The monitoring of concrete carbonation takes an important role in the structures maintenance, considering that corrosion induced by this phenomenon is one of the mainly failure causes in the Reinforcement Concrete Structures (RCS) located in industrial zones, roads and cities. Carbonation of concrete is produced by the penetration of the CO2 inside of the porous net, which is mainly combined with the Ca(OH)2 contained in the concrete pore solution producing carbonates with low solubility and eventually causing a pH drop until neutral levels. The pH drop produces the instability and final generalised destruction of the rebars passive layers, which is the step that precedes generalized corrosion. The current existing systems to detect concrete carbonation are based on potentiometric sensors to detect the pH of concrete pore solution. These have some limitations such as the interference of different reactions on the sensor surface. Considering these limitations, in this study a novel system of voltammetric Au sensors embedded in concrete for the detection of concrete carbonation was presented. In the voltammetric sensor, the potential sweep signal applied comprises the potential range where the effect of the pH variations has more influence in the sensor response. Then the response processing by means of the multivariate analysis PCA (principal component analysis) allows to manage a huge quantity of variables and to reduce the effect of the interference with other analytes, increasing the importance of the pH changes effect in the obtained data. Thus, increasing the reliability of the system to detect the concrete carbonation.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.