Open Access
MATEC Web Conf.
Volume 354, 2022
10th International Symposium on Occupational Health and Safety (SESAM 2021)
Article Number 00020
Number of page(s) 12
Published online 06 January 2022
  1. TRANS/AC.7/9, RECOMMENDATIONS OF THE GROUP OF EXPERTS ON SAFETY IN ROAD TUNNELS, UN, Economic and Social Council, Economic Commission for Europe (2001) [Google Scholar]
  2. TRANS/AC.7/11, REPORT OF THE AD HOC MULTIDISCIPLINARY GROUP OF EXPERTS ON SAFETY IN TUNNELS ON ITS FIFTH SESSION, UN, Economic and Social Council, Economic Commission for Europe (2002) [Google Scholar]
  3. A. Bird, and R. Carvel. The handbook of tunnel fire safety. Thomas Telford Publishing, Edinburg, UK (2012) [Google Scholar]
  4. P. Lei, C. Chen, Y. Zhang, T. Xu, and H. Sun. Experimental study on temperature profile in a branched tunnel fire under natural ventilation considering different fire locations. International Journal of Thermal Sciences 159, DOI: 10.1016 (2021) [Google Scholar]
  5. P. Thomas. The movement of buoyant fluid against a stream and the venting of underground fires, Fire Research Station, (1958) [Google Scholar]
  6. J.P. Vantelon, A. Guelzim, D. Quach, D.K. Son, D. Gabay, and D. Dallest. IAFSS Fire Safety Science-Proceedings of the third international symposium. Investigation of Fire-Induced Smoke Movement in Tunnels and Stations: An Application to the Paris Metro, Edinburg, UK (1991) [Google Scholar]
  7. P.H. Thomas. The movement of smoke in horizontal passages against an air flow, Fire Research Note, 723, Fire Research Station, Watford, UK (1968) [Google Scholar]
  8. W.D. Kennedy. Critical Velocity: Past, Present and Future. Seminar of Smoke and Critical Velocity in Tunnels, JFL Lowndes, London, 305–322 (1996) [Google Scholar]
  9. C.K. Lee, R.F. Chaiken, and J.M. Singer. Interaction between duct fires and ventilation flow: an experimental study, Combustion Science and Technology 20, 59–72 (1979) [Google Scholar]
  10. Y. Oka, and G.T. Atkinson. Control of smoke flow in tunnel fires, Fire Safety Journal 25, 305–322 (1995) [CrossRef] [Google Scholar]
  11. O. Lanchava, N. Ilias, G. Nozadze, S.M. Radu, R.I. Moraru, Z. Khokerashvili, and N. Arudashvili. FDS Modelling of the Piston Effect in Subway Tunnels. Environmental Engineering and Management Journal, 18, 4, 317-325 (2019) [Google Scholar]
  12. O. Vauquelin, and D. Telle. Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires. Fire Safety Journal, 40, 320-330 (2005) [CrossRef] [Google Scholar]
  13. O. Vauquelin. Parametrical study of the backflow occurrence in case of a buoyant release. Experimental Thermal and Fluid Science, 29, 725-731 (2005) [CrossRef] [Google Scholar]
  14. W.K. Chow, Y. Gao, J.H. Zhao, J.F. Dang, C.L. Chow, and L. Miao. Smoke movement in tilted tunnel fires with longitudinal ventilation. Fire Safety Journal, 75, 14–22. DOI: 10.1016/j.firesaf.2015.04.001 (2015) [CrossRef] [Google Scholar]
  15. Y.Z. Li, H. Ingason, and L. Jiang. Influence of tunnel slope on smoke control. RISE Research Institutes of Sweden, 22 (2018) [Google Scholar]
  16. H. Ingason, and Y.Z. Li. Model scale tunnel fire tests with point extraction ventilation. Journal of Fire Protection Engineering, 21(1), 5-36 (2011) [CrossRef] [Google Scholar]
  17. O. Lanchava, N. Ilias, S.M. Radu, and G. Nozadze. Heat and hygroscopic mass exchange modeling for safety management in tunnels of metro. Quality Access to Success, 20, S1, 27-33 (2019) [Google Scholar]
  18. O.A. Lanchava. Heat and mass exchange in permanent mine workings. Journal of Mining Science 1(6), 87-92 (1982) [Google Scholar]
  19. O.A. Lanchava. Heat and mass exchange in newly driven mine workings. Journal of Mining Science 1(5), 99-104 (1985) [Google Scholar]
  20. N. Ilias, O. Lanchava, and G. Nozadze. Numerical Modelling of Fires in Road Tunnels with Longitudinal Ventilation System. Quality Access to Success, 18, S1, 77-80 (2017) [Google Scholar]
  21. Y.Z. Li, and H. Ingason. Overview of research on fire safety in underground road and railway tunnels. Tunnelling and Underground Space Technology, 81, 568-589. (2018) [CrossRef] [Google Scholar]
  22. G.H. Ko, S.R. Kim, and H.S. Ryo. An experimental study on the effect of slope on the critical. Journal of Fire Sciences, 28, 27–47 (2010) [CrossRef] [Google Scholar]
  23. O. Lanchava, N. Ilias, and G. Nozadze. Some Problems for Assessment of Fire in Road Tunnels. Quality Access to Success, 18, S1, 69-72 (2017) [Google Scholar]
  24. Y.Z. Li, B. Lei, and H. Ingason. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Safety Journal, 45, 361-370 (2010) [CrossRef] [Google Scholar]
  25. Y.Z. Li, and H. Ingason. Effect of cross section on critical velocity in longitudinally ventilated tunnel fires. Fire Safety Journal, 91, 303–311 (2017) [CrossRef] [Google Scholar]
  26. J. Kong, Z. Xu, W. You, B. Wang, Y. Liang, and T. Chen. Study of smoke back-layering length with different longitudinal fire locations in inclined tunnels under natural ventilation. Tunnelling and Underground Space Technology, 107, 103663 (2021) [CrossRef] [Google Scholar]
  27. M.C. Weng, X.L. Lu, F. Liu, and C.X. Du. Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Applied Thermal Engineering, 94, 422–434 (2016) [CrossRef] [Google Scholar]
  28. O. Lanchava. Analysis of Critical Air Velocity for Tunnel Fires Controlled by Ventilation. Mining Journal 1 (42), 126-132 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.