Issue |
MATEC Web Conf.
Volume 342, 2021
9th edition of the International Multidisciplinary Symposium “UNIVERSITARIA SIMPRO 2021”: Quality and Innovation in Education, Research and Industry – the Success Triangle for a Sustainable Economic, Social and Environmental Development”
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 10 | |
Section | Sustainable Environmental Engineering and Protection | |
DOI | https://doi.org/10.1051/matecconf/202134203020 | |
Published online | 20 July 2021 |
Fire development study on physical models of transport tunnels
1
G. Tsulukidze Mining Institute, Tbilisi, Mindeli Street 7, Georgia
2
Georgian Technical University, Tbilisi, Kostava Street, 77, Georgia
3
University of Petroşani, Petroşani, Universităţii Street 20, Romania
* Corresponding author: o.lanchava@yahoo.com
The work gives the study results for 1:10 scale physical models of the road tunnels. The tunnel slope changes from 0 to 10% with a 2% spacing. As the models show, the fire strength varies within the range of 5 to15 MW with 5 MW increments. The properties of the tunnel geometry in nature are as follows: cross-sectional area: 46.7m2, length: 120 m, width: 8.5m, height: 5.5m and width and height ratio: 1.54. The models are made of 2 mm-thick stainless-steel sheets. We studied the nature of the spread of smoke, the variation of critical velocity depending on the tunnel slope and the characteristic value of such variation - the grade correction factor. The observation over such values is done depending on the air temperature variability in the tunnel model. The measurements are made with K-type thermocouples with open and closed detectors. Maximum temperature measurement is 800°C. The thermocouples are located in the holes provided in the ceiling of the tunnel model. The distance between the holes is 5 and 10 cm what corresponds to the natural length of the tunnel of 5 and 10 m. Fire is modeled by using the natural gas. The indications of thermocouples and air and gas meters are measured simultaneously and the primary analysis and the digital data transmission are provided with a Data Taker DT85 data logger. The gained results may be used to develop ventilation and emergency management projects for transport tunnels as well as to train personnel and rescuers.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.