Open Access
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
Article Number 07013
Number of page(s) 5
Section Mechanical Design-Manufacture and Automation
Published online 09 February 2017
  1. N. Lobontiu. Compliant mechanisms: design of flexure hinges. CRC press, 2010, pp.2–15. [Google Scholar]
  2. W. Widhiada. T. G. T. Nindhia, N. Budiarsa. Robust control for the motion five fingered robot gripper. Int. J. Mech. Eng. And Rob. Res, 4 (2015), 226–232. [Google Scholar]
  3. Y. Tian, B. Shirinzadeh, D. Zhang. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis. Precision Engineering, 34 (2010), 92–100. [CrossRef] [Google Scholar]
  4. G. Schitter, K. J. Åström, B. E. DeMartini, P. J. Thurner, K. L. Turner, P. K. Hansma. Design and modeling of a high-speed AFM-scanner. IEEE. T. Contr. Syst. T, 15 (2007), 906–915. [CrossRef] [Google Scholar]
  5. B Sollapur Shrishail, P Deshmukh Suhas. XY scanning mechanism: a dynamic approach. Int. J. Mech. Eng. And Rob. Res, 3 (2014), 140–154. [Google Scholar]
  6. K. K. Leang, and A. J.: Fleming High‐speed serial‐kinematic SPM scanner: design and drive considerations, Asian. J. Control, 11 (2009), 144–153. [CrossRef] [Google Scholar]
  7. M. N. M. Zubir, B. Shirinzadeh, Y. Tian. Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sensors and Actuators A: Physical, 150 (2009), 257–266. [CrossRef] [Google Scholar]
  8. Q. Xu. Design and development of a flexure-based dual-stage nanopositioning system with minimum interference behavior. IEEE. T. Autom. Sci. Eng, 9 (2012), 554–563. [CrossRef] [Google Scholar]
  9. T. Ando, N. Kodera, D. Maruyama, E. Takai, K. Saito, A. Toda. A high-speed atomic force microscope for studying biological macromolecules in action, Jpn. J. Appl. Phys, 41 (2002), 4851. [CrossRef] [Google Scholar]
  10. H. Y. Kim, D. H. Ahn, D. G. Gweon. Development of a novel 3 degrees of freedom flexure based positioning system, Rev. Sci. Instrum, 83 (2012), 055114. [CrossRef] [Google Scholar]
  11. S. Awtar, A. H. Slocum. Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des, 129 (2007), 816–830. [CrossRef] [Google Scholar]
  12. Y. Qin, Y. Tian, D. Zhang. Design and dynamic modeling of a 2-DOF decoupled flexure-based mechanism. Chin. J. Mech. Eng, 25 (2012), 688–696. [CrossRef] [Google Scholar]
  13. Y. K. Yong, S. S. Aphale, S. O. R. Moheimani. Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning. IEEE. T. Nanotechnol, 8 (2009), 46–54. [CrossRef] [Google Scholar]
  14. Li Y, Xu Q. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE. T. Robot, 25 (2009), 645–657. [CrossRef] [Google Scholar]
  15. Y. S. Du, T. M. Li, Y. Jiang, H. T. Wang. Design and analysis of a 2-degree-of-freedom flexure-based micro-motion stage. Adv. Mech. Eng. 8 (2016), 1–13. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.