Open Access
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
Article Number 03002
Number of page(s) 4
Section Robot design and development
Published online 17 February 2016
  1. J.J. Dugas, M. Lee, Terrier, and J.Y. Hascoet, Virtual manufacturing for high speed milling. In 35th CIRP Intern. Seminar on Manufacturing Systems, South Korea, p. 199 – 206, (2002). [Google Scholar]
  2. E. Ferre, J. P. Laumond, G. Arechavaleta, C. Esteves, Progresses in assembly path planning, in: International Conference on Product Lifecycle Management, p. 373–382, (2005). [Google Scholar]
  3. M. Bennewitz, W. Burgard, A probabilistic method for planning collision-free trajectories of multiple mobile robots. Proc. of the workshop Service Robotics – Applications and Safety Issues in an Emerging Market at the 14th ECAI, 9, (2000). [Google Scholar]
  4. C.W. Warren, Multiple robot path coordination using artificial potential fields. In Robotics and Automation Proceedings. 1990 IEEE International , 01, p. 500 – 505, (1990). [Google Scholar]
  5. R. Ahmad, S. Tichadou, J.Y. Hascoet, 3D Safe and intelligent trajectory generation for multi-axis machine tools using machine vision, International Journal of Computer-Integrated manufacturing, Vol. 26 (4), p. 365–385, (2012). [CrossRef] [Google Scholar]
  6. R. Ahmad, S. Tichadou, J.Y. Hascoet, New computer vision based Snakes and Ladders algorithm for the safe trajectory of two axis CNC machines. Journal of Computer Aided Design, Doi:10.1016/j.cad.2011.12.008, Vol 44 (5), p. 355–366, (2011). [CrossRef] [Google Scholar]
  7. L. Zhang, X. Huang, Y. J. Kim, and D. Manocha, D-plan: Efficient collision-free path computation for part removal and disassembly. In Journal of Computer-Aided Design and Applications, (2008). [Google Scholar]
  8. S. Jun, K. Cha, Y. S. Lee, Optimizing tool orientations for 5-axis machining by configuration-space search method. Computer-Aided Design 35 (6), p. 549 – 566, (2003). [CrossRef] [Google Scholar]
  9. Z. Liangjun, D. Manocha, An efficient retraction-based RRT planner, in: International Conference on Robotics and Automation, ICRA, p. 3743–3750, (2008). [Google Scholar]
  10. J.J. Kuffner, S.M. LaValle, “RRT-connect: An efficient approach to single-query path planning, Proceedings of International Conference on Robotics and Automation, p. 995–1001, (2000). [Google Scholar]
  11. J. Pan, S. Chitta, D. Manocha, Faster sample-based motion planning using instance-based learning, in: E. Frazzoli, T. Lozano-Perez, N. Roy, D. Rus (Eds.) Algorithmic Foundations of Robotics X, Springer Berlin Heidelberg, p. 381–396, (2013). [CrossRef] [Google Scholar]
  12. N. Jetchev, M. Toussaint, Fast motion planning from experience: trajectory prediction for speeding up movement generation, Auton Robot, 34, p. 111–127, (2013). [CrossRef] [Google Scholar]
  13. P. Berenson, K. Abeel, Goldberg, A robot path planning framework that learns from experience, IEEE International Conference on Robotics and Automation, p. 3671–3678, (2012). [Google Scholar]
  14. R. Ahmad, P. Plapper, Ant-Air self-learning algorithm for path planning in a cluttered environment, 2nd International conference on Control Mechatronics and Automation, Dubai, UAE, (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.