Issue |
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 4 | |
Section | Robot design and development | |
DOI | https://doi.org/10.1051/matecconf/20164203002 | |
Published online | 17 February 2016 |
Path planning self-learning Algorithm for a dynamic changing environment
1 FSTC-RUES, 6 rue Coudenhove-Kalergi, University of Luxembourg, Luxembourg
2 CECOS University of IT and Emerging sciences, Peshawar, Pakistan
a Corresponding author: Rafiq.Ahmad@uni.lu, engrrafiq@gmail.com.
Safe and optimal path planning in a cluttered changing environment for agents’ movement is an area of research, which needs further investigations. The existing methods are able to generated secure trajectories, but they are not efficient enough to learn from their mistakes, especially when dynamics of the environment are concerned. This paper presents an advanced version of the Ant-Air algorithm, which can detect the changed scenario and while keeping the lessons learnt from the previously planned safe trajectory, it then generates a safe and optimal path by avoiding collisions with the obstacles. The method presented can learn from the experience and hence improve the already generated trajectories further by using the lessons learned from the experience. The concept developed is applicable in various domains such as path planning for mobile robot, industrial robots, and simulation of part movement in narrow passages.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.