Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 6 | |
Section | Self-Sensing, Monitoring and Inspection of Concrete Structures and Infrastructure | |
DOI | https://doi.org/10.1051/matecconf/202337805002 | |
Published online | 28 April 2023 |
A novel measurement system for self-sensing graphite-cement composites
University of Cambridge, Department of Engineering, CB2 1PZ Cambridge, UK
* Corresponding author: xw367@cam.ac.uk
Carbon-based conductive fillers have been incorporated into cement matrix to develop smart self-sensing materials with piezoresistive properties. However, accurately measuring the sensing property of the cement composite without compromising its mechanical performance is not easy to achieve in practical engineering. Therefore, in this study, a novel experimental setup for measuring the self-sensing properties of conductive fillers embedded cementitious composites was developed. This multi-functional measurement system is able to measure specimens under compressive and flexural stress with different loading profiles, apply various loading rates, obtain the electrical properties, and measure the strain using both LVDT and Particle Image Velocimetry (PIV) or Digital Image Correlation (DIC) techniques with all the data synchronised to one file sharing the same time stamp controlled by Python codes. In this study, the piezoresistivity and the performance on damage detection of the cementitious composites with low graphite concentration (5%) in a bulk form were investigated through monotonic compressive and flexural tests. Experiment results include the specimens’ stress, strain and Fractional Change in Resistivity (FCR). Data analysis showed that the set-up and methodology developed in this study are effective to test self-sensing cementitious composites, and the graphite-cement composites used in this study have a stable piezoresistivity and able to detect damage upon failure.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.