Open Access
Issue |
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 12 | |
Section | Sustainability and Circularity | |
DOI | https://doi.org/10.1051/matecconf/202440306003 | |
Published online | 16 September 2024 |
- P.J.M. Monteiro, S.A. Miller, A. Horvath, Towards sustainable concrete, Nat. Mater. 16 (2017) 245–256. https://doi.org/10.1038/nmat4930. [Google Scholar]
- P.V. Krivenko, Alkaline Cements and Concretes: Proceedings of the First International Conference Held at the Scientific-Research Institute on Binders and Materials Named After V. D. Glukhovsky, Kiev, Ukraine on 11 -14 October 1994(VIPOL Stock Company, (1994). [Google Scholar]
- J. Davidovits, Geopolymers, J. Therm. Anal. 37 (1991) 1633–1656. https://doi.org/10.1007/BF01912193. [CrossRef] [Google Scholar]
- J.L. Provis, J.S. van Deventer (Eds.), Geopolymers Woodhead Publishing Series in Civil and Structural Engineering(Woodhead Publishing, (2009). [Google Scholar]
- C. Künzel, L. Vandeperre, S. Donatello, A. Boccaccini, C.R. Cheeseman, P. Brown, Ambient Temperature Drying Shrinkage and Cracking in Metakaolin‐Based Geopolymers, J. Am. Ceram. Soc. 95 (2012). https://doi.org/10.1111/j.1551-2916.2012.05380.x. [Google Scholar]
- M.A. Longhi, Z. Zhang, E.D. Rodríguez, A.P. Kirchheim, H. Wang, Efflorescence of Alkali-Activated Cements (Geopolymers) and the Impacts on Material Structures: A Critical Analysis, Front. Mater. 6 (2019). https://doi.org/10.3389/fmats.2019.00089. [CrossRef] [Google Scholar]
- H. Castillo, H. Collado, T. Droguett, S. Sánchez, M. Vesely, P. Garrido, S. Palma, Factors Affecting the Compressive Strength of Geopolymers: A Review, Minerals 11 (2021) 1317. https://doi.org/10.3390/min11121317. [Google Scholar]
- Ping Duan, Chunjie Yan, Wei Zhou, Wenjun Luo, Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust, Constr. Build. Mater. 111 (2016) 600–610. [CrossRef] [Google Scholar]
- C.d.B.C.S. Alvarenga, R.d.B.C. Sales, R.B. Caldas, P.R. Cetlin, M.T.P. Aguilar, Use of glass waste in the production of metakaolin-based geopolymer submitted to room temperature and thermal curing, Ambient. constr. 22 (2022) 147–160. https://doi.org/10.1590/s1678-86212022000100584. [CrossRef] [Google Scholar]
- C.K. Yip, G.C. Lukey, J.L. Provis, J.S. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res. 38 (2008) 554–564. https://doi.org/10.1016/j.cemconres.2007.11.001. [CrossRef] [Google Scholar]
- A. Buchwald, M. Vicent, R. Kriegel, C. Kaps, M. Monzó, A. Barba, Geopolymeric binders with different fine fillers — Phase transformations at high temperatures, Appl. Clay Sci. 46 (2009) 190–195. https://doi.org/10.1016/j.clay.2009.08.002. [CrossRef] [Google Scholar]
- D. Ziegler, A. Formia, J.-M. Tulliani, P. Palmero, Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials, Materials 9 (2016). https://doi.org/10.3390/ma9060466. [CrossRef] [Google Scholar]
- N. Ranjbar, M. Mehrali, A. Behnia, U.J. Alengaram, M.Z. Jumaat, Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar, Mater. Des. 59 (2014) 532–539. https://doi.org/10.1016/j.matdes.2014.03.037. [CrossRef] [Google Scholar]
- N. Li, C. Shi, Q. Wang, Z. Zhang, Z. Ou, Composition design and performance of alkali-activated cements, Mater. Struct. 50 (2017) 178. https://doi.org/10.1617/s11527-017-1048-0. [Google Scholar]
- E. Rodríguez, R. Mejía de Gutiérrez, S. Bernal, M. Gordillo, Effect of the SiO2 /Al2 O3 and Na2 O/SiO2 ratios on the properties of geopolymers based on MK, Rev.Fac.Ing.Univ.Antioquia 0 (2013) 30–41. [Google Scholar]
- Mustofa, Mustofa, Sungging Pintowantoro, The Effect of Si/Al Ratio to Compressive Strength and Water Absorption of Ferronickel Slag-based Geopolymer, Indonesia, Indonesia, 2016. [Google Scholar]
- M. Lahoti, P. Narang, K.H. Tan, E.-H. Yang, Mix design factors and strength prediction of metakaolin-based geopolymer, Ceram. Int. 43 (2017) 11433–11441. https://doi.org/10.1016/j.ceramint.2017.06.006. [CrossRef] [Google Scholar]
- P. Duxson, G.C. Lukey, F. Separovic, J.S.J. van Deventer, Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels, Industrial & Engineering Chemistry Research 44 (2005) 832–839. https://doi.org/10.1021/ie0494216. [CrossRef] [Google Scholar]
- P. Duxson, S.W. Mallicoat, G.C. Lukey, W.M. Kriven, J. van Deventer, The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers, Colloids Surf., A 292 (2007) 8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044. [CrossRef] [Google Scholar]
- D.S.M. Perera, O. Uchida, E.R. Vance, K.S. Finnie, Influence of curing schedule on the integrity of geopolymers, J. Mater. Sci. 42 (2007) 3099–3106. [CrossRef] [Google Scholar]
- Q. Wan, F. Rao, S. Song, R.E. García, R.M. Estrella, C.L. Patiño, Y. Zhang, Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios, Cem. Concr. Compos. 79 (2017) 45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014. [CrossRef] [Google Scholar]
- P. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S. van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf., A 269 (2005) 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060. [CrossRef] [Google Scholar]
- Q. Wan, F. Rao, S. Song, R.E. García, R.M. Estrella, C.L. Patiño, Y. Zhang, Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios, Cem. Concr. Compos. 79 (2017) 45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014. [CrossRef] [Google Scholar]
- S. Riahi, A. Nemati, A.R. Khodabandeh, S. Baghshahi, The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers, Mater. Chem. Phys. 240 (2020) 122223. https://doi.org/10.1016/j.matchemphys.2019.122223. [CrossRef] [Google Scholar]
- Z. Yunsheng, S. Wei, L. Zongjin, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Appl. Clay Sci. 47 (2010) 271–275. https://doi.org/10.1016/j.clay.2009.11.002. [CrossRef] [Google Scholar]
- D. Dimas, I. Giannopoulou, D. Panias, Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology, J. Mater. Sci. 44 (2009) 3719–3730. https://doi.org/10.1007/s10853-009-3497-5. [CrossRef] [Google Scholar]
- H. Wang, H. Wu, Z. Xing, R. Wang, S. Dai, The Effect of Various Si/Al, Na/Al Molar Ratios and Free Water on Micromorphology and Macro-Strength of Metakaolin-Based Geopolymer, Materials 14 (2021). https://doi.org/10.3390/ma14143845. [Google Scholar]
- I. Tole, K. Habermehl-Cwirzen, A. Cwirzen, Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders – review, Mineral. Petrol. 113 (2019) 449–462. https://doi.org/10.1007/s00710-019-00666-y. [CrossRef] [Google Scholar]
- R.L. Frost, É. Makó, J. Kristóf, E. Horváth, J.T. Kloprogge, Modification of Kaolinite Surfaces by Mechanochemical Treatment, Langmuir 17 (2001) 4731–4738. https://doi.org/10.1021/la001453k. [CrossRef] [Google Scholar]
- S. Rescic, P. Plescia, P. Cossari, E. Tempesta, D. Capitani, N. Proietti, F.Fratini, A.M. Mecchi, Mechano-chemical activation: an ecological safety process in the production of materials to stone conservation, Procedia Eng. 21 (2011) 1061–1071. https://doi.org/10.1016/j.proeng.2011.11.2112. [CrossRef] [Google Scholar]
- A.Z. Juhasz, L. Opoczky, Mechanical activation of minerals by grinding pulverizing and morphology of particles(New York, NY (United States); Halsted Press, United States, (1990). [Google Scholar]
- L.N. Tchadjie, S.O. Ekolu, Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis, J. Mater. Sci. 53 (2018) 4709–4733. https://doi.org/10.1007/s10853-017-1907-7. [CrossRef] [Google Scholar]
- A. Buchwald, H. Hilbig, C. Kaps, Alkali-activated metakaolin-slag blend“performance and structure in dependence of their composition, J. Mater. Sci. 42 (2007) 3024–3032. [CrossRef] [Google Scholar]
- Y. Ling, K. Wang, C.Q. Fu, Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture, Cem. Concr. Compos. (2019). [Google Scholar]
- F. Collins, J. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete, Cem. Concr. Res. 30 (2000) 1401–1406. https://doi.org/10.1016/S0008-8846(00)00327-6. [CrossRef] [Google Scholar]
- C.K. Yip, G.C. Lukey, J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res. 35 (2005) 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042. [CrossRef] [Google Scholar]
- A. Allahverdi, E. Najafi Kani, K. Hossain, M. Lachemi, 17 - Methods to control efflorescence in alkali-activated cement-based materials, in: F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds.), Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Oxford, 2015, pp. 463–483. [CrossRef] [Google Scholar]
- G.W. Scherer, Stress from crystallization of salt, Cem. Concr. Res. 34 (2004) 1613–1624. https://doi.org/10.1016/j.cemconres.2003.12.034. [CrossRef] [Google Scholar]
- C.Y. Heah, H. Kamarudin, A.M.A. Bakri, M. Binhussain, M. Luqman, I.K. Nizar, C.M. Ruzaidi, Y.M. Liew, Effect of Curing Profile on Kaolin-based Geopolymers, Physics Procedia 22 (2011) 305–311. https://doi.org/10.1016/j.phpro.2011.11.048. [CrossRef] [Google Scholar]
- V.B. Thapa, D. Waldmann, J.-F. Wagner, A. Lecomte, Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder, Appl. Clay Sci. 161 (2018) 110–118. https://doi.org/10.1016/j.clay.2018.04.025. [CrossRef] [Google Scholar]
- M. Schmitz, S. Röhling, R. Dohrmann, DERA Rohstoffinformationen: DERA Rohstoffinformationen Nr. 5 In der grobkeramischen Industrie nutzbares Rohstoffpotenzial der bei Gewinnung und Aufbereitung in der deutschen Steine- und Erden- Industrie anfallenden Feinanteile, 2011. https://www.bgr.bund.de/DE/Themen/Min_rohstoffe/Projekte/Rohstoffverfuegbarkeit-abgeschlossen/RW_Waschschlamm.html. [Google Scholar]
- N. Döbelin, Profex and BGMN: Open-source software for phase analysis by X-ray diffraction, Front. Bioeng. Biotechnol. 4 (2016). https://doi.org/10.3389/conf.FBIOE.2016.01.02281. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.