Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 06004
Number of page(s) 17
Section Sustainability and Circularity
DOI https://doi.org/10.1051/matecconf/202440306004
Published online 16 September 2024
  1. EC (European Commission), 2011. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Roadmap to a Resource Efficient Europe, COM (2011) 571 final, Brussels, Belgium, 25 pp. [Google Scholar]
  2. Ding, T., Xiao, J., Tam, V.W.Y. (2016). A closed-loop life cycle assessment of recycled aggregate concrete utilization in China. Waste Management, 56, 367-375. https://doi.org/10.1016/j.wasman.2016.05.031 [CrossRef] [Google Scholar]
  3. Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. [CrossRef] [Google Scholar]
  4. Mehta, K. P. (2001). Reducing the environmental impact of concrete. Concrete international, 23 (10), 61–66. [Google Scholar]
  5. Babor, D., Plian, D., & Judele, L. (2009). Environmental impact of concrete. Buletinul Institutului Politehnic din Iași. Sectia Constructii, Arhitectura, 55(4), 27. [Google Scholar]
  6. Thomas, C., Setién, J., Polanco, J.A., Alaejos, P., Sánchez de Juan, M. (2013). Durability of recycled aggregate concrete. Construction and Building Materials, 40, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106 [CrossRef] [Google Scholar]
  7. McNeil, K., Kang, T.HK. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7, 61–69. https://doi.org/10.1007/s40069-013-0032-5 [CrossRef] [Google Scholar]
  8. Thomas, J., Thaickavil, N.N., Wilson, P.M. (2018). Strength and durability of concrete containing recycled concrete aggregates. Journal of Building Engineering, 19, 349-365. https://doi.org/10.1016/j.jobe.2018.05.007 [CrossRef] [Google Scholar]
  9. Paschoalin Filho, J. A., Camelo, D. G., de Carvalho, D., Guerner Dias, A. J., & Marcondes Versolatto, B. A. (2020). Use of construction and demolition solid wastes for basket gabion filling. Waste Management & Research, 38(12), 1321-1330. https://doi.org/10.1177/0734242X20922591 [CrossRef] [Google Scholar]
  10. Mazhar, M. A., Alam, P., Ahmed, S., Khan, M. S., & Adam, F. A. (2023). Sustainable usage of demolished concrete waste as a sub-base material in road pavement. Frontiers in Sustainability, 4, 1060878. https://doi.org/10.3389/frsus.2023.1060878 [CrossRef] [Google Scholar]
  11. Küpfer, C., Bertola, N., & Fivet, C. (2024). Reuse of cut concrete slabs in new buildings for circular ultra-low-carbon floor designs. Journal of Cleaner Production, 448, 141566. https://doi.org/10.1016/j.jclepro.2024.141566 [Google Scholar]
  12. Huang, B., Gao, X., Xu, X., Song, J., Geng, Y., Sarkis, J., Fishman, T., Kua, H., Nakatani, J. (2020). A Life Cycle Thinking Framework to Mitigate the Environmental Impact of Building Materials. One Earth, 3(5), 564-573. https://doi.org/10.1016/j.oneear.2020.10.010 [CrossRef] [Google Scholar]
  13. Scrivener, K., Martirena, F., Bishnoi, S., Maity, S. (2018). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017 [CrossRef] [Google Scholar]
  14. British Standards Institution. BS EN 15978:2011: Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method. London: BSI, 2011. [Google Scholar]
  15. Circular ecology. The Inventory of Carbon and Energy (The ICE Database). 2020. Available from: https://carbon.tips/ice3 [Accessed: January 2024]. [Google Scholar]
  16. The International Environmental Product Declaration (EPD) System. 2023. Available from: https://www.environdec.com/library/epd8024 [Accessed: January 2024]. [Google Scholar]
  17. HM Government. Greenhouse gas reporting: conversion factors 2021. 2021. Available from: https://carbon.tips/cf2021 [Accessed: January 2024]. [Google Scholar]
  18. WRAP. Net Waste Tool. Available from: https://carbon.tips/nwtool [Accessed: January 2024]. [Google Scholar]
  19. Wang, Q., Pantoja-Rosero, B. G., dos Santos, K. R. M., Beyer, K. (2024). An image convolution-based method for the irregular stone packing problem in masonry wall construction. European Journal of Operational Research, 316(2), 733-753. https://doi.org/10.1016/j.ejor.2024.01.037 [CrossRef] [Google Scholar]
  20. Pantoja-Rosero, B., Saloustros, S., Achanta, R., & Beyer, K. (2023). Image-based geometric digital twinning for stone masonry elements. Automation in Construction, 145, 104632. https://doi.org/10.1016/j.autcon.2022.104632 [CrossRef] [Google Scholar]
  21. Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., Maujean, B., De Lillo, G., & Lanthony, Y. (2021). AliceVision Meshroom: An open-source 3D reconstruction pipeline. In Proceedings of the 12th ACM Multimedia Systems Conference - MMSys ‘21 (pp. 241–247). ACM Press. https://doi.org10.1145/3458305.3478443 [CrossRef] [Google Scholar]
  22. Borri, A., Corradi, M., Castori, G., & De Maria, A. (2015). A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering, 13, 2647–2665. https://doi.org/10.1007/s10518-014-9684-3 [CrossRef] [Google Scholar]
  23. Tsiskreli, G.D., & Dzhavakhidze, A.N. (1970). The effect of aggregate size on strength and deformation of concrete. Hydrotechnical Construction, 4, 448–453. https://doi.org/10.1007/BF02376145 [CrossRef] [Google Scholar]
  24. EN 1015. Methods of test for mortar for masonry-Part 11 Determination of flexural and compressive strength of hardened mortar, 2000. [Google Scholar]
  25. Schweizerischer Ingenieur- und Architektenverein (SIA), SIA 262: Betonbau, Zürich, Switzerland: SIA, 2013. [Google Scholar]
  26. CEN (European Committee for Standardization), EN 13791: Assessment of in-situ compressive strength in structures and precast concrete components, Standard, (2019). [Google Scholar]
  27. CEN (European Committee for Standardization), EN 206-1: Concrete - Part 1: Specification, performance, production, and conformity, Standard, (2000). [Google Scholar]
  28. BSI (British Standards Institution), National Annex to BS EN 12504-1: Testing concrete in structures – Part 1: Cored specimens – Taking, examining and testing in compression, Standard, (2003). [Google Scholar]
  29. CEN (European Committee for Standardization), EN 1052-1: Methods of test for masonry – Part 1: Determination of compressive strength, Standard, (1998). [Google Scholar]
  30. CEN (European Committee for Standardization), Eurocode 6: Design of masonry structures – Part 1: General rules for reinforced and unreinforced masonry structures, Standard, (2005). [Google Scholar]
  31. M. Tomazevic (1998), “Earthquake-Resistant Design of Masonry Buildings”, World Scientific Publishing Company, 268 pp. [Google Scholar]
  32. Wilding, B.V., Godio, M., & Beyer, K. (2020). The ratio of shear to elastic modulus of in-plane loaded masonry. Materials and Structures, 53(1), 40. https://doi.org/10.1617/s11527-020-01464-1 [CrossRef] [Google Scholar]
  33. RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures), RILEM TC 76-LUM: Diagonal tensile strength tests of small wall specimens, Technical Report TC76-LUM, RILEM Publications SARL, (1991). [Google Scholar]
  34. ASTM (American Society for Testing and Materials), ASTM E 519-02 Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, Standard, (2002) [Google Scholar]
  35. Brignola, A., Frumento, S., Lagomarsino, S., & Podestà, S. (2008). Identification of shear parameters of masonry panels through the in-situ diagonal compression test. International Journal of Architectural Heritage, 3(1), 52–73. https://doi.org/10.1080/15583050802138634 [CrossRef] [Google Scholar]
  36. MIT (2009) Ministry of Infrastructures and Transportation, Circ. N. 617 of 2/2/2009: Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale 14 Gennaio 2008. Italy [Google Scholar]
  37. Circolare, 2019. Instruction for the Application of the Building Code for Constructions (in Italian). Italy: Ministry of Infrastructure and Transport. [Google Scholar]
  38. CEN (European Committee for Standardization). (2004). EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Brussels, Belgium: European Committee for Standardization. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.