Issue |
MATEC Web Conf.
Volume 97, 2017
Engineering Technology International Conference 2016 (ETIC 2016)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/20179701034 | |
Published online | 01 February 2017 |
Fire Related Temperature Resistance of Fly Ash Based Geopolymer Mortar
1 Professor, Department of Chemistry, SRM University, Kattankulathur, 603 203, India
2 Research Scholar, Department of Chemistry, SRM University, Kattankulathur, 603 203, India
3 Head, CACR, SRM University, Kattankulathur, 603203, India
The study presented in this paper is on the effect of heat treatment on fly ash based geopolymer mortar synthesized from fly ash (Class F –Low lime) using alkaline binary activator solution containing sodium hydroxide (18 M) and sodium silicate solution (MR 2.0), cured at 80oC for 24 h. 7 days aged specimen heated at elevated temperature (200°C, 400°C, 600°C and 800°C) for the sustained period of 2hrs. The TGA/DTA analysis and thermal conductivity measurement as per ASTM C113 were carried out besides the compressive strengths. The thermal stability of the fly ash mortar at elevated temperature was found to be high as reflected in the observed value of f800°C/f30°C being more than 1 and this ratio was raised to about 1.3 with the addition of 2% Zirconium di oxide (ZrO2). No visible cracks were found on the specimens with and without ZrO2 when 800°C was sustained for 4 hrs in smaller specimens of size: 50 mm diameter x 100 mm height and in also bigger size specimens: 22 cm × 11 cm × 7 cm) specimens. TGA/DTA analysis of the geopolymer paste showed that the retention of mass was around 90%. The addition of ZrO2 improved thermal resistance. The micro structure of the matrix found to be intact even at elevated temperature that was evident from the FESEM studies.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.