Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01014
Number of page(s) 12
DOI https://doi.org/10.1051/matecconf/202439801014
Published online 25 June 2024
  1. Hougen, D.F., Benjaafar, S., Bonney, J.C., Budenske, J.R., Dvorak, M., Gini, M., French, H., Krantz, D.G., Li, P.Y., Malver, F. and Nelson, B., 2000, April. A miniature robotic system for reconnaissance and surveillance. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 1, pp. 501–507). IEEE. [Google Scholar]
  2. Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen, C.P., Gini, M., Hougen, D.F. and Papanikolopoulos, N., 2002. A robot team for surveillance tasks: Design and architecture. Robotics and Autonomous Systems, 40(2-3), pp.173–183. [CrossRef] [Google Scholar]
  3. Zhang, L., Huang, Q., Zhang, W., Li, Y., Huang, Y., Li, H. and Wu, L., 2011, August. Design and realization for throwable semi-autonomous reconnaissance robot. In 2011 IEEE International Conference on Automation and Logistics (ICAL) (pp. 6–11). IEEE. [Google Scholar]
  4. Zhang, L., Huang, Q., Huang, Y., Li, Y., Sang, W. and Wu, L., 2011, June. Mechanical designs and control system of throwable miniature reconnaissance robot. In 2011 IEEE International Conference on Information and Automation (pp. 431–436). IEEE. [Google Scholar]
  5. Chemel, B., Mutschler, E. and Schempf, H., 1999, May. Cyclops: Miniature robotic reconnaissance system. In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) (Vol. 3, pp. 2298–2302). IEEE. [Google Scholar]
  6. Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen, C.P., Gini, M., Hougen, D.F. and Papanikolopoulos, N., 2002. A robot team for surveillance tasks: Design and architecture. Robotics and Autonomous Systems, 40(2-3), pp.173–183. [CrossRef] [Google Scholar]
  7. Zhang, L., Huang, Q., Li, Y., Gao, J., Li, H. and Wu, L., 2012, August. Research and development of throwable miniature reconnaissance robot. In 2012 IEEE international conference on mechatronics and automation (pp. 1254–1259). IEEE. [Google Scholar]
  8. Sohail, H., Hamza, A., Rashid, N., Ali, M.S. and Ghani, T., 2023, March. Design and Analysis of Throwable Unmanned Ground Vehicle. In 2023 International Conference on Robotics and Automation in Industry (ICRAI) (pp. 1–6). IEEE. [Google Scholar]
  9. Li, Y., Huang, Q., Gao, J., Zhang, L. and Tian, Y., 2012, July. A novel semi-autonomous throwbot for reconnaissance application. In Proceedings of the 10th World Congress on Intelligent Control and Automation (pp. 3822–3827). IEEE. [Google Scholar]
  10. Liu, Q., Zhang, Y. and Xu, H., 2008. Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Applied Clay Science, 42(1-2), pp.232–237. [CrossRef] [Google Scholar]
  11. Shakiba, M., Rezvani Ghomi, E., Khosravi, F., Jouybar, S., Bigham, A., Zare, M., Abdouss, M., Moaref, R. and Ramakrishna, S., 2021. Nylon—A material introduction and overview for biomedical applications. Polymers for advanced technologies, 32(9), pp.3368–3383. [CrossRef] [Google Scholar]
  12. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O., 1993. Mechanical properties of nylon 6-clay hybrid. Journal of materials research, 8(5), pp.1185–1189. [CrossRef] [Google Scholar]
  13. Zhao, J., Yan, W., Xi, N., Mutka, M.W. and Xiao, L., 2014, May. A miniature 25 grams running and jumping robot. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5115–5120). IEEE. [Google Scholar]
  14. Zhao, J., Xu, J., Gao, B., Xi, N., Cintron, F.J., Mutka, M.W. and Xiao, L., 2013. MSU jumper: A single-motor-actuated miniature steerable jumping robot. IEEE Transactions on Robotics, 29(3), pp.602–614. [CrossRef] [Google Scholar]
  15. Cintron, F.J., Pongaliur, K., Mutka, M.W., Xiao, L., Zhao, J. and Xi, N., 2012. Leveraging height in a jumping sensor network to extend network coverage. IEEE transactions on wireless communications, 11(5), pp.1840–1849. [CrossRef] [Google Scholar]
  16. Zhang, J., Song, G., Li, Z., Qiao, G., Sun, H. and Song, A., 2012, October. Self-righting, steering and takeoff angle adjusting for a jumping robot. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2089–2094). IEEE. [Google Scholar]
  17. Li, F., Liu, W., Fu, X., Bonsignori, G., Scarfogliero, U., Stefanini, C. and Dario, P., 2012. Jumping like an insect: Design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration. Mechatronics, 22(2), pp.167–176. [CrossRef] [Google Scholar]
  18. Kovač, M., Schlegel, M., Zufferey, J.C. and Floreano, D., 2010. Steerable miniature jumping robot. Autonomous Robots, 28, pp.295–306.. [CrossRef] [Google Scholar]
  19. Woodward, M.A. and Sitti, M., 2011, September. Design of a miniature integrated multi-modal jumping and gliding robot. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 556–561). IEEE. [Google Scholar]
  20. Zhao, J., Yang, R., Xi, N., Gao, B., Fan, X., Mutka, M. and Xiao, L., 2009. Development of a self-stabilization miniature jumping robot. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst (pp. 2217–2222). [Google Scholar]
  21. Zhao, J., Xi, N., Gao, B., Mutka, M.W. and Xiao, L., 2010, October. Design and testing of a controllable miniature jumping robot. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3346–3351). IEEE. [Google Scholar]
  22. Zhao, J., Xi, N., Gao, B., Mutka, M.W. and Xiao, L., 2011, May. Development of a controllable and continuous jumping robot. In 2011 IEEE International Conference on Robotics and Automation (pp. 4614–4619). IEEE. [Google Scholar]
  23. Yamada, A., Mameda, H., Mochiyama, H. and Fujimoto, H., 2010, October. A compact jumping robot utilizing snap-through buckling with bend and twist. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 389–394). IEEE. [Google Scholar]
  24. Noh, M., Kim, S.W., An, S., Koh, J.S. and Cho, K.J., 2012. Flea-inspired catapult mechanism for miniature jumping robots. IEEE transactions on robotics, 28(5), pp.1007–1018. [CrossRef] [Google Scholar]
  25. Tanaka, T. and Hirose, S., 2008, September. Development of leg-wheel hybrid quadruped “AirHopper” design of powerful light-weight leg with wheel. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3890–3895). IEEE. [Google Scholar]
  26. Kim, D.H., Lee, J.H., Kim, I., Noh, S.H. and Oho, S.K., 2008. Mechanism, control, and visual management of a jumping robot. Mechatronics, 18(10), pp.591–600. [CrossRef] [Google Scholar]
  27. Herrera, M., Matuschek, G. and Kettrup, A., 2002. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer degradation and stability, 78(2), pp.323–331. [CrossRef] [Google Scholar]
  28. Abdou-Sabet, S., Puydak, R.C. and Rader, C.P., 1996. Dynamically vulcanized thermoplastic elastomers. Rubber chemistry and technology, 69(3), pp.476–494. [CrossRef] [Google Scholar]
  29. Panda, H.S. and Jagadeesha, T., 2021. Impact analysis of rifle bullet on corrugated sandwich panel structures for defense applications. Materials Today: Proceedings, 46, pp.8444–8449. [CrossRef] [Google Scholar]
  30. Chang, C.L. and Yang, S.H., 2008. Finite element simulation of wheel impact test. Journal of Achievements in Materials and Manufacturing Engineering, 28(2), pp.167–170. [Google Scholar]
  31. Nguyen, H.G. and Castelli, R., 2014, June. Development and evaluation of the Stingray, an amphibious maritime interdiction operations unmanned ground vehicle. In Unmanned Systems Technology XVI (Vol. 9084, pp. 213–226). SPIE. [Google Scholar]
  32. Gong, X., Ren, C., Liu, Y., Sun, J. and Xie, F., 2022. Impact response of the honeycomb sandwich structure with different Poisson’s ratios. Materials, 15(19), p.6982. [CrossRef] [Google Scholar]
  33. Li, H., Chen, W. and Hao, H., 2020. Factors influencing impact force profile and measurement accuracy in drop weight impact tests. International Journal of Impact Engineering, 145, p.103688. [CrossRef] [Google Scholar]
  34. Makuuchi, K., Yoshii, F. and Gunewardena, J.A.G.S.G., 1995. Radiation vulcanization of NR latex with low energy electron beams. Radiation Physics and Chemistry, 46(4-6), pp.979–982. [CrossRef] [Google Scholar]
  35. Sahu, S.K. and Sreekanth, P.R., 2022. Experimental investigation of in-plane compressive and damping behavior anisotropic graded honeycomb structure. Arabian Journal for Science and Engineering, 47(12), pp.15741–15753. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.