Open Access
MATEC Web Conf.
Volume 351, 2021
20th International Conference Diagnostics of Machines and Vehicles “Hybrid Multimedia Mobile Stage”
Article Number 01011
Number of page(s) 11
Section Selected Diagnostic Problems of Hybrid Multimedia Mobile Stages
Published online 06 December 2021
  1. Y.А Ivanov. Technologies of computer vision in systems of automotive science [Текст] / Y.А. Ivanov // Automation, communication, informatics. – 2011. – №6. – p. 4648. [Google Scholar]
  2. L. Paletta. Detection of Traffic Signs Using Posterior Classifier Combination [Text] / Lucas Paletta // Institute of Digital Image Processing: Joanneum Research Wastiangasse. №6, A 8010 Graz. Austria. – 2002. [Google Scholar]
  3. S.M. Sokolov Intellectual Images Processing for a Realtime Recognition Problem. [Text] / S.M. Sokolov, A.A. Boguslavsky // Proc. The 2nd Intern. Multi Conf. On Complexity, Informatics and Cybernetics IMCIC 2011). Orlando. Florida. USA., 2011. Vol. II. P. 406-411. [Google Scholar]
  4. Y.V Vizilter. Image processing and analysis in machine vision tasks [Text]: Course of lectures and practical exercises / Y.V. Vizilter, S.Y. Zheltov, A.V. Bondarenko, M.V. Ososkov, A.V. Morzhin. M.: Fizmatkniga, 2010. [Google Scholar]
  5. R. Gonzalez. Digital image processing [Text] / R. Gonzalez, R. Woods. M.: Technosphere, 2005. [Google Scholar]
  6. L. Yuekai, G. Liang, G. Hongli, Y. Zhichao, Y. Yunguang, Z. Bin. Machine vision based condition monitoring and fault diagnosis of machine tools using information from machined surface texture. A review Mechanical Systems and Signal Processing Volume 164, 2022 [Google Scholar]
  7. Li J. Real-time computerized annotation of pictures [Text] / Jia Li, James Z. Wang // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008. Vol. 30, no. 6. P. 985-1002. [CrossRef] [Google Scholar]
  8. R.S. Blum. Multi Sensor Image Fusion and Its Applications [Text] / R.S. Blum, Z. Liu // Signal Processing and Communications. 2006. P. 40-42. [Google Scholar]
  9. Yu.M Borodenko. Diagnostics of car electrical equipment / Yu.M. Borodenko, O.A. Dzyubenko, O.M. Bykov. Kharkiv: KhNADU, 2014. 230 p. Diagnostics of electronic systems of cars. Samara: NPP “NTS”, 2008. 178 p. [Google Scholar]
  10. Wheeled vehicles. Requirements for safety of technical condition and control methods: DSTU 3649-2010. [Effective from 01.07.2011]. К.: 2011. 56 p. [Google Scholar]
  11. O.F. Dashchenko. General principles of diagnosing electronic car control systems: textbook. way. / O.F. Dashchenko, V.G. Maximov, O.D. Nitsevich. O.: Science and Technology, 2012 392 p. [Google Scholar]
  12. E.V Poezhaeva., A.G. Fedotov, P.V. Zaglyadov. Application of systems of technical sight in diagnostics of cars at operation // Internet-journal “Science” 2014. № 6 (free access). Title from the screen. I’m from. Russian, English DOI: 10.15862/103TVN614. [Google Scholar]
  13. A.N. Kamaev., V.A. Sukhenko., D.A. Karmanov. Construction and visualization of three-dimensional models of the seabed for testing AUV vision systems. Programming, 2017, No. 3, P. 69-82. [Google Scholar]
  14. A.V. Zubar., R.N. Khamitov., K.V. Kaikov. Imitation model for assessing the error of the system of technical videos. News of Tomsk Polytechnic University. Engineering Georesurs. 2021. T. 332. No. 4. P.181-191. [CrossRef] [Google Scholar]
  15. D.V. Commissarov. Calibration method for digital non-metric chambers for ground laser scanners /D.V. Commissarov, A.V. Commissarov, [Electronic resource]: 2006. [Google Scholar]
  16. L.D. Zimbueva. Method for determining the total distortion of digital images // Computer optics, volume 35, №3, 2011. [Google Scholar]
  17. Learning OpenCV Gary Bradski and Adrian Kaehler, Published by O’Reilly Media, Inc., 2008. [Google Scholar]
  18. D.С. Brown. The Bandle adjustment Progress and Prospects. ISP Symposium Commission 3. Helsinki, 1976. [Google Scholar]
  19. I. Harutaka, H. Susumu, A. Keiichi, O. Yuzo. Camera calibration technique by pancloseup exposures for industrial vision metrology. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX. [Google Scholar]
  20. H. Ebner. Self calibrating block adjustment. ISP Symposium Commission 3. Helsinki, 1976. [Google Scholar]
  21. I. Toschi, E. Nocerino, M. Hess, F. Menna, B. Sargeant, L. MacDonald, F. Remondino, and S. Robson “Improving automated 3D reconstruction methods via vision metrology”, Proc. SPIE 9528, Videometrics, Range Imaging, and Applications XIII, 95280H(21 June 2015); [Google Scholar]
  22. R.Y. Tsai. A Versatile Camera Calibration Technique for High Accuracy 3d Machine Vision Metrology Using Off The Shelf TV Cameras and Lenses. IEEE Journal on Robotics and Automation. 1987. Vol. 3(4). P. 323-344. [CrossRef] [Google Scholar]
  23. A.Yu. Polyvanov, Yu.V. Ivanov, D.V. Kholin. Methods of transformation of coordinates of the industrial robot system for the operation of laser welding “Mechatronics, Automation, Management” volume 21, No. 3 (2020) httpS://DOI.ORG/10.17587/MAU.21.11. P. 66-173. [Google Scholar]
  24. Patent No. 2 672 466 Test template for calibration of video sensors of the multispectral system of technical vision / Kudinov I.A., Pavlov O.V., Halopov I.S. Publ. 14.11.2018 Bul. №32. 4 p. [Google Scholar]
  25. Patent No. 2250498 Russia, IPC G06K9 / 32 Method of automatic three-dimensional calibration of the binocular systum of technical vision and urgent for its implementation / Degtyarev S.V., Titov V.S., Torfanov M.I. No. 2003105497/09; Stage. 02/25/2003. Publ. 04/20/2005, Bul. №11. 3 p. [Google Scholar]
  26. A.Yu. Polyvanov, Yu.V. Ivanov, D.V. Kholin. Kalibrovka Video Sensors Systems Technical Distribution of Industrial Work for Laser Welding West MGTU “Stankin” № 2 (49), 2019. P. 119-126. [Google Scholar]
  27. Z. Zhang. A flexible new technique for camera calibration / Z. Zhang // IEEE Trans. on PAMI, Vol. 22(11). 2000. Р. 1330-1334. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.