Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 03003
Number of page(s) 7
Section Additive and Near Net Shape Manufacturing
Published online 12 October 2020
  1. G. Lutjering and J. Williams, Titanium, Springer, 2007. [Google Scholar]
  2. O. M. Ivasishin, D. Eylon, V.I. Bondarchuk and D.G. Savvakin, “Diffusion during Powder Metallurgy Synthesis of Titanium Alloys,” Defect Diffus. Forum, vol. 277, pp. 177-185, 2008. [CrossRef] [Google Scholar]
  3. O. M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson, Bondareva and K. A., “Synthesis of Alloy Ti− 6Al− 4V with Low Residual,” Powder Metall. Met. Ceram, vol. 41, pp. 382-390, 2002. [CrossRef] [Google Scholar]
  4. O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak and O.B. Bondarchuk, “Role of Surface Contamination in Titanium PM,” Key Eng. Mater., vol. 520, pp. 121-132, 2012. [CrossRef] [Google Scholar]
  5. J. Paramore, Relationship Between Processing, Structure, and Properties of Titanium Alloys Produced by Hydrogen Sintering and, Salt Lake City: University of Utah, 2015. [Google Scholar]
  6. P. Sun, Z.Z. Fang, M. Koopman, J. Paramore, K.R. Chandran, Y. Ren and J. Lu, “An experimental study of the (Ti–6Al–4V)–xH phase diagram using in situ,” Acta Materialia, vol. 84, pp. 29-41, 2015. [CrossRef] [Google Scholar]
  7. P. Sun, Z. Fang, M. Koopman, Y. Xia, J. Paramore, K. Chandran, Y. Ren and J. Lu, “Phase Transformations and Formation of Ultra-Fine,” Metallurgical and Materials Transactions A, vol. 46A, pp. 5546-5560, 2015. [CrossRef] [Google Scholar]
  8. P. Sun, Z. Fang and M. Koopman, “A Comparison of Hydrogen Sintering and Phase Transformation (HSPT) Processing with Vacuum Sintering of CP‐Ti,” Advanced Engineering Materials, vol. 15, pp. 1007-1013, 2013. [Google Scholar]
  9. J. Paramore, Z. Fang, P. Sun, M. Koopman, K. Chandran and M. Dunstan, “A powder metallurgy method for manufacturing Ti-6Al-4V with wrought-like microstructures and mechanical properties via hydrogen sintering and phase transformation (HSPT),” Scripta Materialia, vol. 107, pp. 103-106, 2015. [CrossRef] [Google Scholar]
  10. J. Paramore, Z. Fang, M. Dunstan, P. Sun and B. Butler, “Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys,” Scientific Reports, vol. 7, pp. 1-12, 2017. [CrossRef] [Google Scholar]
  11. S. Liu and Y. Shin, “Additive manufacturing of Ti6Al4V alloy: A review,” Materials & Design, vol. 164, pp. 1-23, 2019. [Google Scholar]
  12. M. Agarwala, A. Bandyopadhyay, R. van Weeren, N. Langrana, A. Safari and S. Danforth, “Fused deposition of ceramics (FDC) for structural silicon nitride components,” in Solid Freeform Fabrication Symposium, Austin, TX, 1996. [Google Scholar]
  13. M. Agarwala, R. van Weeren, A. Bandyopadhyay, A. Safari and S. Danforth, “Filament feed materials for fused deposition processing of ceramics and metals,” in Solid Freeform Fabrication Symposium, Austin, TX, 1996. [Google Scholar]
  14. M. Agarwala, R. van Weeren, A. Bandyopadhyay, P. Whalen, A. Safari and S. Danforth, “Fused deposition of ceramics and metals: An overview,” in Solid Freeform Fabrication Symposium, Austin, TX, 1996. [Google Scholar]
  15. M. Agarwala, R. van Weeren, R. Vaidyanathan, A. Bandyopadhyay, G. Carrasquillo, V. Jamalabad, N. Langrana, A. Safari, S. Garofalini and S. Danforth, “Structural ceramics by fused deposition of ceramics,” in Solid Freeform Fabrication Symposium, Austin, TX, 1995. [Google Scholar]
  16. C. Kukla, I. Duretek, S. Schuschnigg, J. Gonzalez-Gutierrez and C. Holzer, “Properties for PIM feedstock used in fused filament fabrication,” in World PM2016, Hamburg, Germany, 2016. [Google Scholar]
  17. C. Burkhardt, P. Freigassner, O. Weber, P. Imgrund and S. Hampel, “Fused filament fabrication (FFF) of 316L green parts for the MIM process,” in World PM2016, Hamburg, Germany, 2016. [Google Scholar]
  18. S. Riecker, J. Clouse, T. Studnitzky, O. Andersen and B. Kieback, “Fused deposition modeling - opportunities for cheap metal AM,” in World PM2106, Hamburg, Germany, 2016. [Google Scholar]
  19. J. Mireles, D. Espalin, D. Roberson, B. Zinniel, F. Medina and R. Wicker, “Fused deposition modeling of metals,” in Solid Freeform Fabrication Symposium, Austin, TX, 2012. [Google Scholar]
  20. J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota and C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives,” Materials, vol. 11, pp. 1-36, 2018. [CrossRef] [Google Scholar]
  21. ASTM International, “ASTM B988: Standard Specification for Powder Metallurgy (PM) Titanium and Titanium Alloy Structural Components,” ASTM International, West Conshohocken, PA, 2013. [Google Scholar]
  22. M. Dunstan, A. Gordon, J. Paramore and B. Butler, “Feasibility of Using Titanium Machine Turnings in Powder,” JOM, vol. 71, pp. 1831-1839, 2019. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.