Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 11004
Number of page(s) 9
Section Mixed-Mode
DOI https://doi.org/10.1051/matecconf/201930011004
Published online 02 December 2019
  1. E.R. De Los Rios, H.J. Mohamed, K.J. Miller. A micro-mechanics analysis for short fatigue crack growth. Fatigue Fract Eng Mater Struct, 8: 49-64 (1985) [CrossRef] [Google Scholar]
  2. A. Navarro, E.R. De Los Rios. Short and long fatigue crack growth: a unified model. Fatigue Fract Eng Mater Struct, 11: 383-96 (1988) [CrossRef] [Google Scholar]
  3. K. Hussain, E. R. De Los Rios, A. Navarro. A two-stage micromechanics model for short fatigue cracks. Eng Fract Mech, 44: 425-36 (1993) [CrossRef] [Google Scholar]
  4. M. Wicke, A. Brueckner-Foit, T. Kirsten, M. Zimmermann, F. Buelbuel, H.J. Christ. Near-Threshold Crack Extension Mechanism in an Aluminum Alloy Studied by SEM and X-Ray Tomography. Int J Fatigue, 119: 102-11 (2019) [CrossRef] [Google Scholar]
  5. M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, D. Raabe. Crystal Plasticity Study in Stress and Strain Partitioning in a Measured 3D Dual Phase Steel Microstructure. Phys Mesomech, 20: 311-23 (2017) [CrossRef] [Google Scholar]
  6. Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitino, R. Radovitzky. Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int J Plast, 24: 2278-97 (2008) [CrossRef] [Google Scholar]
  7. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, D. Raabe. DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput Mater Sci, 158: 420-78 (2019) [CrossRef] [Google Scholar]
  8. J.W. Hutchinson. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc A: Math, Phys Eng Sci, 348: 101-27 (1976) [CrossRef] [Google Scholar]
  9. D. Peirce, R.J. Asaro, A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metall, 31: 1951-76 (1983) [CrossRef] [Google Scholar]
  10. P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters. A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast, 46: 37-53 (2013) [CrossRef] [Google Scholar]
  11. P. Shanthraj, P. Eisenlohr, M. Diehl, F. Roters. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int J Plast, 66: 31-45 (2015) [CrossRef] [Google Scholar]
  12. H. Moulinec P. Suquet. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comp Meth Appl Mech Eng, 157: 69-94 (1998) [CrossRef] [Google Scholar]
  13. S.B. Lee, R.A. Lebensohn, A.D. Rollett. Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms. Int J Plast, 27: 707-27 (2011) [CrossRef] [Google Scholar]
  14. J. Sliseris, H. Andrä, M. Kabel, B. Dix, B. Plinke, O. Wirjadi, G. Frolovs. Numerical prediction of the stiffness and strength of medium density fiberboards. Mech Mater, 79: 73-84 (2014) [CrossRef] [Google Scholar]
  15. J. Zeman, J. Vondřejc, J. Novák, I. Marek. Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comp Phys, 229: 8065-71 (2010) [CrossRef] [Google Scholar]
  16. L. Gélébart, R. Mondon-Cancel. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci, 77: 430-39 (2013) [CrossRef] [Google Scholar]
  17. M.A. Groeber, M.A. Jackson. DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D. Integ Mater Manuf Innov, 3: 5 (2014) [Google Scholar]
  18. T.J. Marrow, J.-Y. Buffière, P.J. Withers, G. Johnson, D. Engelberg. High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron. Int J Fatigue, 26: 717-25 (2004) [CrossRef] [Google Scholar]
  19. J.-Y. Buffière, E. Ferrie, H. Proudhon, W. Ludwig. Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Mater Sci Technol, 22: 1019-24 (2006) [CrossRef] [Google Scholar]
  20. M. Herbig, A. King, P. Reischig, H. Proudhon, E.M. Lauridsen, J. Marrow, J.-Y. Buffière, W. Ludwig. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography. Acta Mater, 59: 590-601 (2011) [CrossRef] [Google Scholar]
  21. C. Zambaldi, Y. Yang, T.R. Bieler, D. Raabe. Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip. J Mater Res, 27: 356-67 (2012). [CrossRef] [Google Scholar]
  22. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe. Integrated experimental-numerical analysis of stress and strain partitioning in multi-phase alloys. Acta Mater, 81: 386-400 (2014) [CrossRef] [Google Scholar]
  23. T. Maiti, P. Eisenlohr. Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces. Scri Mater, 145: 37-40 (2018) [CrossRef] [Google Scholar]
  24. D. Ma. Elastic properties of Mn-rich α intermetallic phase in engineering aluminum alloys: An ab initio study. J Appl Phys, 124: 085109 (2018) [CrossRef] [Google Scholar]
  25. C. Zambaldi, D. Raabe. Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation. Acta Mater, 58: 3516-30 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.