Open Access
Issue
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
Article Number 07001
Number of page(s) 7
Section Materials Engineering
DOI https://doi.org/10.1051/matecconf/201926907001
Published online 22 February 2019
  1. Cao, H., Hao, M., Shen, C., & Liang, P. The influence of different vacuum degree on the porosity and mechanical properties of aluminum die casting. Vacuum, 146, 278-281 (2017) [CrossRef] [Google Scholar]
  2. Fan, K. L., He, G. Q., Liu, X. S., Liu, B., She, M., Yuan, Y. L., ... Lu, Q. Tensile and fatigue properties of gravity casting aluminum alloys for engine cylinder heads. Materials Science and Engineering A, 586, 78-85 (2013) [CrossRef] [Google Scholar]
  3. Santosh, M. V., Suresh, K. R., & Kiran Aithal, S. Mechanical Characterization and Microstructure analysis of Al C355.0 by Sand Casting, Die Casting and Centrifugal Casting Techniques. Materials Today: Proceedings, 4(10), 10987-10993 (2017) [CrossRef] [Google Scholar]
  4. Li, R., Liu, L., Zhang, L., Sun, J., Shi, Y., & Yu, B. Effect of Squeeze Casting on Microstructure and Mechanical Properties of Hypereutectic Al-xSi Alloys. Journal of Materials Science and Technology, 33(4), 404-410 (2017) [CrossRef] [Google Scholar]
  5. Qi, M., Kang, Y., Qiu, Q., Tang, W., Li, J., & Li, B. Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure diecasting. Journal of Alloys and Compounds, 749, 487-502 (2018) [CrossRef] [Google Scholar]
  6. Jahangiri, A., Marashi, S. P. H., Mohammadaliha, M., & Ashofte, V. The effect of pressure and pouring temperature on the porosity, microstructure, hardness and yield stress of AA2024 aluminum alloy during the squeeze casting process. Journal of Materials Processing Technology, 245, 1-6 (2017) [CrossRef] [Google Scholar]
  7. Yu, W., Zhao, H., Wang, L., Guo, Z., & Xiong, S. The influence of T6 treatment on fracture behavior of hypereutectic Al-Si HPDC casting alloy. Journal of Alloys and Compounds, 731, 444-451 (2018) [CrossRef] [Google Scholar]
  8. Zhao, L., Pan, Y., Liao, H., & Wang, Q. Degassing of aluminum alloys during re-melting. Materials Letters, 66(1), 328-331 (2012) [CrossRef] [Google Scholar]
  9. Haghayeghi, R., Bahai, H., & Kapranos, P. Effect of ultrasonic argon degassing on dissolved hydrogen in aluminium alloy. Materials Letters, 82, 230-232 (2012) [CrossRef] [Google Scholar]
  10. Ren, Y., Ma, W., Wei, K., Yu, W., Dai, Y., & Morita, K. Degassing of aluminum alloys via the electromagnetic directional solidification. Vacuum, 109, 82-85 (2014) [CrossRef] [Google Scholar]
  11. Dhaneswara, D., Syahrial, A, Z., Ayman, M, T. Mechanical Properties of Nano SiC-Reinforced Aluminum A336 with Sr Modifier Fabricated by Stir Casting Method. Procedia Engineering, 216, 43-50 (2017) [CrossRef] [Google Scholar]
  12. Tzeng, Y.-C., & Jian, S.-Y. Effects of the addition of trace amounts of Sc on the microstructure and mechanical properties of Al-11.6Si alloys. Materials Science and Engineering: A, 723, 22-28 (2018). [CrossRef] [Google Scholar]
  13. Jung, J. G., Lee, S. H., Cho, Y. H., Yoon, W. H., Ahn, T. Y., Ahn, Y. S., & Lee, J. M. Effect of transition elements on the microstructure and tensile properties of Al-12Si alloy cast under ultrasonic melt treatment. Journal of Alloys and Compounds, 712, 277-287 (2017) [CrossRef] [Google Scholar]
  14. Puga, H., Barbosa, J., Tuan, N. Q., & Silva, F. Effect of ultrasonic degassing on performance of Al-based components. Transactions of Nonferrous Metals Society of China (English Edition), 24(11), 3459-3464 (2014) [CrossRef] [Google Scholar]
  15. Lin, Y. C., Luo, S. C., Huang, J., Yin, L. X., & Jiang, X. Y. Effects of solution treatment on microstructures and micro-hardness of a Sr-modified Al-Si-Mg alloy. Materials Science and Engineering A, 725, 530-540 (2018) [CrossRef] [Google Scholar]
  16. Costa, T. A., Dias, M., Gomes, L. G., Rocha, O. L., & Garcia, A. Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al-Si-Cu alloy. Journal of Alloys and Compounds, 683, 485-494 (2016) [CrossRef] [Google Scholar]
  17. Rejaeian, M., Karamouz, M., Emamy, M., & Hajizamani, M. Effects of Be additions on microstructure, hardness and tensile properties of A380 aluminum alloy. Transactions of Nonferrous Metals Society of China (English Edition), 25(11), 3539-3545 (2015) [CrossRef] [Google Scholar]
  18. Ceschini, L., Morri, A., Toschi, S., Johansson, S., & Seifeddine, S. Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature. Materials Science and Engineering A, 648, 340-349 (2015) [CrossRef] [Google Scholar]
  19. Abuhasel, K. H. A., Ibrahim, M. F., Elgallad, E. M., & Samuel, F. H. On the impact toughness of Al-Si cast alloys. Materials and Design, 91, 388-397 (2016). [CrossRef] [Google Scholar]
  20. Samuel, E., Golbahar, B., Samuel, A. M., Doty, H. W., Valtierra, S., & Samuel, F. H. Effect of grain refiner on the tensile and impact properties of Al-Si-Mg cast alloys. Materials and Design, 56, 468-479 (2014). [CrossRef] [Google Scholar]
  21. Samuel, E., Golbahar, B., Samuel, A. M., Doty, H. W., Valtierra, S., & Samuel, F. H. Effect of grain refiner on the tensile and impact properties of Al-Si-Mg cast alloys. Materials and Design, 56, 468-479 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.