Open Access
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
Article Number 01024
Number of page(s) 7
Section Green Construction Materials and Technologies, Environmental Impact and Green Design, Local and Recycled Materials
Published online 25 January 2019
  1. V. Zivica, and A. Bajza, Acidic attack of cement based materials-a review. Part 1. Principle of acid attack. Construction and Building Materials, 15(8): 331–340 (2001) [CrossRef] [Google Scholar]
  2. S.K. Verma, S.S. Bhadauria, and S. Akhtar, Evaluating effect of chloride attack and concrete cover on the probability of corrosion. Frontiers of Structural and Civil Engineering, 7(4): 379–390 (2013) [CrossRef] [Google Scholar]
  3. M.S. Darmawan, Pitting corrosion model for reinforced concrete structures in a chloride environment. Magazine of Concrete Research, 62(2): 91–101 (2010) [CrossRef] [Google Scholar]
  4. H.A. Neville, E. Oh, L.B. Spanierman, M.J. Heppner, and M. Clark, General and culturally specific factors influencing black and white rape survivors’ self-esteem. Psychology of Women Quarterly, 28(1): 83–94 (2004) [CrossRef] [Google Scholar]
  5. C. Suwito, and Y. Xi, The effect of chloride-induced steel corrosion on service life of reinforced concrete structures. Structure and Infrastructure Engineering, 4(3): 177–192 (2008) [CrossRef] [Google Scholar]
  6. J.L. Jonker, J. Von Byern, P. Flammang, W. Klepal, and A.M. Power, Unusual adhesive production system in the barnacle Lepas anatifera: An ultrastructural and histochemical investigation. Journal of Morphology, 273(12): 1377–1391 (2012) [CrossRef] [Google Scholar]
  7. L.H. Anneza, J.M. Irwan, N. Othman, N. and A.F. Alshalif, Identification of Bacteria and the Effect on Compressive Strength of Concrete. MATEC Web of Conferences, 47:1008 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  8. A.F. Alshalif, J.M. Irwan, N. Othman, and L.H. Anneza, Isolation of sulphate reduction bacteria (SRB) to improve compress strength and water penetration of bio-concrete. MATEC Web of Conferences, 47:1–6 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  9. J.M. Irwan, L.H. Anneza, N. Othman, and A.F. Alshalif, Compressive strength and water penetration of Concrete with Enterococcus Faecalis and calcium lactate. Key Engineering Materials, 705: 345–349 (2016) [CrossRef] [Google Scholar]
  10. A. Gandhimathi, and D. Suji, Studies on the Development of Eco-friendly Self-healing Concrete- A Green Building Concept. Nature Environment and Pollution Technology, 14(3): 639–644 (2015) [Google Scholar]
  11. F. Nosouhian, D. Mostofinejad, and H. Hasheminejad, Concrete Durability Improvement in a Sulfate Environment Using Bacteria, in The Journal of Materials in Civil Engineering, 28(1) (2015) [Google Scholar]
  12. BSI 1881. Testing Concrete: Part 125: 2013. Methods for mixing and sampling fresh concrete in the laboratory, London. [Google Scholar]
  13. BSI EN 12390. Part 3: 2009, Compressive strength of test specimens, London. [Google Scholar]
  14. British Standard Institution Testing hardened concrete part 6: Tensile splitting strength of test specimens. BS EN 12390-6:2009. [Google Scholar]
  15. British Standard Institution. Testing hardened concrete part 5: Flexural strength of test specimens.BS EN 12390-5:2009 [Google Scholar]
  16. W.J. Mc.Carter, D. Watson, Wetting and drying of cover-zone concrete, Proceedings of the Institution of Civil Engineers, Structures and Buildings, 122(2), 227–236 (1997) [CrossRef] [Google Scholar]
  17. S.U. Al-Dulaijan, M. Maslehuddin, M.M. Al- Zahrani, A.M. Sharif, M. Shameem, and M. Ibrahim, Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate, Cement and Concrete Composites, 25(4),429–437 (2003) [CrossRef] [Google Scholar]
  18. N.G. Babu, and S. Siddiraju, An Experimental Study on Strength and Fracture Properties of Self Healing Concrete. International Journal of Civil Engineering and Technology, 7(3): 398–406 (2016) [Google Scholar]
  19. H. Kalhori, and R. Bagherpour, Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete, Construction and Building Materials, 148: 249–260 (2017) [CrossRef] [Google Scholar]
  20. F.U.A. Shaikh and S.W.M. Supit, Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles, Construction and building materials, 70(2014), 309–321 [CrossRef] [Google Scholar]
  21. C.C. Gavimath, B.M. Mali, V.R. Hooli, J.D. Mallpur, A.B. Patil, Potential application of bacteria to improve the strength of cement concrete, International Journal of Advanced Biotechnology and Research, ISSN 0976-2612, Vol. 3, Issue 1, pg. 541–544 (2012) [Google Scholar]
  22. J.M. Irwan, L.H. Anneza, N. Othman, A.F. Alshalif, M.M. Zamer, and T. Teddy, Mechanical Properties of Concrete with Enterococcus Faecalis and Calcium Lactate. Procedia Engineering, 171, 592–597 (2017) [CrossRef] [Google Scholar]
  23. J.M. Irwan, L.H. Anneza, N. Othman, and A.F. Alshalif, Compressive strength and water penetration of Concrete with Enterococcus Faecalis and calcium lactate. Key Engineering Materials, 705, 345–349 (2016) [CrossRef] [Google Scholar]
  24. S. Majumdar, M. Sarkar, T. Chowdhury, B. Chattopadhyay, and S. Mandal, Use of bacterial protein powder in commercial fly ash pozzolana cements for high performance construction materials, Open Journal of Civil Engineering, 2(04),218 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.