Open Access
Issue
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
Article Number 02001
Number of page(s) 5
Section Construction Management, Construction Method and System, Optimization and Innovation in Structural Design
DOI https://doi.org/10.1051/matecconf/201925802001
Published online 25 January 2019
  1. A.M. Adrian, A. Utamima, K.-J. Wang, A comparative study of GA, PSO and ACO for solving construction site layout optimization, KSCE J. Civ. Eng. 19, 520–527 (2015) [CrossRef] [Google Scholar]
  2. I.C. Yeh, Architectural layout optimization using annealed neural network, Automat. Constr. 15, 531–539 (2006) [CrossRef] [Google Scholar]
  3. J. Kennedy, R. Eberhart, Particle swarm optimization (Proceedings of IEEE International Conference on Neural Networks, 4, 1995) [Google Scholar]
  4. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim. 39, 459–471 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  5. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, M.M. Lukito, A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure, Automat. Constr. 69, 21–33 (2016) [CrossRef] [Google Scholar]
  6. D. Prayogo, M.-Y. Cheng, Y.-W. Wu, A.A. Herdany, H. Prayogo, Differential Big Bang - Big Crunch algorithm for construction-engineering design optimization, Automat. Constr. 85, 290–304 (2018) [CrossRef] [Google Scholar]
  7. H. Zhang, J.Y. Wang, Particle Swarm Optimization for Construction Site Unequal-Area Layout, J. Constr. Eng. M. 134, 739–748 (2008) [CrossRef] [Google Scholar]
  8. J. Xu, Z. Li, Multi-Objective Dynamic Construction Site Layout Planning in Fuzzy Random Environment, Automat. Constr. 27, 155–169 (2012) [CrossRef] [Google Scholar]
  9. M. Yahya, M.P. Saka, Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights, Automat. Constr. 38, 14–29 (2014) [CrossRef] [Google Scholar]
  10. M.-Y. Cheng, D. Prayogo, Symbiotic Organisms Search: A new metaheuristic optimization algorithm, Comput. Struct. 139, 98–112 (2014) [CrossRef] [Google Scholar]
  11. M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies, J. Chinese Inst. Civ. Hydraul. Eng. 26, 293–308 (2014) [Google Scholar]
  12. D.-H. Tran, M.-Y. Cheng, D. Prayogo, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time-cost-labor utilization tradeoff problem, Knowl.-Based Syst. 94, 132–145 (2016) [CrossRef] [Google Scholar]
  13. M.-Y. Cheng, D. Prayogo, D.-H. Tran, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search, J. Comput. Civ. Eng. 30, 04015036 (2016) [CrossRef] [Google Scholar]
  14. D. Prayogo, M.-Y. Cheng, H. Prayogo, A Novel Implementation of Nature-inspired Optimization for Civil Engineering: A Comparative Study of Symbiotic Organisms Search, Civil Engineering Dimension 19, 36–43 (2017) [Google Scholar]
  15. D. Prayogo, M.Y. Cheng, J. Widjaja, H. Ongkowijoyo, H. Prayogo, Prediction of concrete compressive strength from early age test result using an advanced metaheuristic-based machine learning technique (ISARC 2017 - Proceedings of the 34th International Symposium on Automation and Robotics in Construction, 2017) [Google Scholar]
  16. D. Prayogo, Metaheuristic-Based Machine Learning System for Prediction of Compressive Strength based on Concrete Mixture Properties and Early-Age Strength Test Results, Civil Engineering Dimension 20, 21–29 (2018) [CrossRef] [Google Scholar]
  17. D. Prayogo, R.A. Gosno, R. Evander, S. Limanto, Implementasi Metode Metaheuristik Symbiotic Organisms Search Dalam Penentuan Tata Letak Fasilitas Proyek Konstruksi Berdasarkan Jarak Tempuh Pekerja, Jurnal Teknik Industri 19, 103–114 (2018) [in Indonesian]. [CrossRef] [Google Scholar]
  18. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search-least squares support vector regression, Neural Comput. Appl. (2018) [Google Scholar]
  19. G.G. Tejani, V.J. Savsani, V.K. Patel, S. Mirjalili, Truss optimization with natural frequency bounds using improved symbiotic organisms search, Knowl.- Based Syst. 143, 162–178 (2018) [CrossRef] [Google Scholar]
  20. G.G. Tejani, V.J. Savsani, V.K. Patel, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization, J. Comput. Des. Eng. 3, 226–249 (2016) [Google Scholar]
  21. G.G. Tejani, V.J. Savsani, S. Bureerat, V.K. Patel, Topology and Size Optimization of Trusses with Static and Dynamic Bounds by Modified Symbiotic Organisms Search, J. Comput. Civ. Eng. 32, 04017085 (2018) [CrossRef] [Google Scholar]
  22. D.M. Tate, A.E. Smith, Unequal-area facility layout by genetic search, IIE Trans. 27, 465–472 (1995) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.