Open Access
Issue
MATEC Web Conf.
Volume 224, 2018
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018)
Article Number 01032
Number of page(s) 7
Section Manufacturing Technologies, Tools and Equipment
DOI https://doi.org/10.1051/matecconf/201822401032
Published online 30 October 2018
  1. N.V. Syreischikova, Abstract of a thesis of the candidate of technical sciences, Increase of efficiency of processing by a coated abrasive at flat grinding operations, 18 (1989) [Google Scholar]
  2. D.A. Axinte, J. Kwong, M.C. Kong, Workpiece surface integrity of Ti-6-4 heat-resistant alloy when employing different polishing methods, J. Mater. Process. Technol. 209(4), 1843–1852 (2009) [CrossRef] [Google Scholar]
  3. W. Huai, H. Tang, Y. Shi, X. Lin, Prediction of surface roughness ratio of polishing blade of abrasive cloth wheel and optimization of processing parameters, Int. J. Adv. Manuf. Technol. Article in press, 1–10 (2016) [Google Scholar]
  4. T. Zhao, Y. Shi, X. Lin, J. Duan, P. Sun, J. Zhang, Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine, Int. J. Adv. Manuf. Technol. 74(5-8), 653–663 (2014) [CrossRef] [Google Scholar]
  5. M. Bigerelle, A. Gautier, B. Hagege, J. Favergeon, B. Bounichane, Roughness characteristic length scales of belt finished surface, J. Mater. Process. Technol. 209(20), 6103–6116 (2009) [CrossRef] [Google Scholar]
  6. A.M. Kozlov, A.A. Kozlov, Y.V. Vasilenko, Modeling a cylindrical surface machined by a non-circular face tool, Procedia Eng. 150, 1081–1088 (2016) [CrossRef] [Google Scholar]
  7. N.E. Karkalos, J. Kundrák, A.P. Markopoulos, Assessment of the performance of neural networks models for the prediction of surface roughness after grinding of steels, Int. J. Artif. Intell. 15(1), 55–75 (2017) [Google Scholar]
  8. G. Xiao, Y. Huang, Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade, Int. J. Adv. Manuf. Technol. 83(9-12), 1697–1706 (2016) [CrossRef] [Google Scholar]
  9. H. Li, G. Xiao, Y. Huang, Y. Chen, L. Zou, Experimental research on the belt grinding technology for the real-R edge of the aero-engine precision-forging blade, Int. J. Nanomanuf. 12(2), 197–213 (2016) [CrossRef] [Google Scholar]
  10. D.A. Axinte, M. Kritmanorot, M. Axinte, N.N.Z. Gindy, Investigations on belt polishing of heat-resistant titanium alloys, J. Mater. Process. Technol. 166(3), 398–404 (2005) [CrossRef] [Google Scholar]
  11. P.P. Pereverzev, A.V. Akintseva, Model of formation of processing errors intragrinding, Russ. Eng. Res. 36(12), 1048–1053 (2016) [CrossRef] [Google Scholar]
  12. Y. Song, W. Liang, Y. Yang, A method for grinding removal control of a robot belt grinding system, J. Intell. Manuf. 23(5), 1903–1913 (2012) [CrossRef] [Google Scholar]
  13. X. Zhang, B. Kuhlenkötter, K. Kneupner, An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grinding, Int. J. Mach. Tool. Manuf. 45(6), 641–648 (2005) [CrossRef] [Google Scholar]
  14. J. Wang, D. Zhang, B. Wu, M. Luo, Y. Zhang, Kinematic analysis and feedrate optimization in six-axis NC abrasive belt grinding of blades, Int. J. Adv. Manuf. Technol. 79(1-4), 405–414 (2015) [CrossRef] [Google Scholar]
  15. B. Hou, Y. Wang, F. Wang, Z. Ji, H. Liu, Research on belt grinding for marine propeller blade based on the second-order osculation, Int. J. Adv. Manuf. Technol. 80(9-12), 1855–1862 (2015) [CrossRef] [Google Scholar]
  16. G. Wang, Y. Wang, L. Zhang, J. Zhao, H. Zhou, Development and polishing process of a mobile robot finishing large mold surface, Mach. Sci. Technol. 18(4), 603–625 (2014) [CrossRef] [Google Scholar]
  17. H. Huang, Z.M. Gong, X.Q. Chen, L. Zhou, Robotic grinding and polishing for turbine-vane overhaul, J. Mater. Process. Technol. 127(2), 140–145 (2002) [CrossRef] [Google Scholar]
  18. D. Zhu, S. Luo, L. Yang, W. Chen, S. Yan, H. Ding, On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys, Tribol. Int. 90, 55–59 (2015) [CrossRef] [Google Scholar]
  19. S. Bratan, A. Kolesov, S. Roshchupkin, T. Stadnik, Theoretical-probabilistic model of the rotary belt grinding process, MATEC Web Conf. 129, 01078 (2017) [CrossRef] [Google Scholar]
  20. T. Stadnik, D. Sidorov, A. Kharchenko, Investigation of Diamond Elastic Belts Characteristics Effect on Rotary Belt Grinding Process Output Performance, Procedia Eng. 206, 1415–1418 (2017) [CrossRef] [Google Scholar]
  21. V. Pandiyan, W. Caesarendra, T. Tjahjowidodo, H.H. Tan, In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm, J. Manuf. Proces. 31, 199–213 (2018) [CrossRef] [Google Scholar]
  22. W. Kapłonek, K. Nadolny, Assessment of the grinding wheel active surface condition using SEM and image analysis techniques, J. Braz. Soc. Mech. Sci. Eng. 35(3), 207–215 (2013) [CrossRef] [Google Scholar]
  23. Y. Novoselov, S. Bratan, V. Bogutsky, Analysis of relation between grinding wheel wear and abrasive grains wear, Procedia Eng. 150, 809–814 (2016) [Google Scholar]
  24. D.B. Shatko, V.S. Lyukshin, V.N. Bakumenko, Performance Potential of Grinding Tools on Flexible Backing Produced of Grains with the Controlled Form, IOP Conf. Ser.Mater. Sci. Eng. 142(1), 012082 (2016) [CrossRef] [Google Scholar]
  25. N.V. Syreyshchikova, D.Yu. Pimenov, Quality assessment of emery cloth-based abrasive tool using elasticity technological parameter, Procedia Eng. 206, 1155–1160 (2017) [CrossRef] [Google Scholar]
  26. E.I. Alexentsev, E.V. Bogomolov, M.A. Zenin, Processing of turbine blades with abrasive belts, Stanki i instrument (Machines and Tools) No. 10, 18–19 (2003) [Google Scholar]
  27. A.A. Syreyshchikov, N.V. Syreyshchikova, Setting of the technological indicators of the grit paper characteristics in the computer design of grinding operations, Progressivnye tekhonologii v mashinostroenii (Progressive Technologies in Mechanical Engineering) 11–13 (2011) [Google Scholar]
  28. Product quality management. Basic concepts. Terms and definitions, Moscow: Publishing House of Standards, 22 pp. (1979) [Google Scholar]
  29. A.A. Syreyshchikov, Technology and equipment of modern mechanical engineering, Research technologies of quality function deployment in the grit paper production, 26–28 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.