Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03038
Number of page(s) 6
Section Digital Signal and Image Processing
DOI https://doi.org/10.1051/matecconf/201817303038
Published online 19 June 2018
  1. J. A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology, 82(143):29–36, (1982) [CrossRef] [PubMed] [Google Scholar]
  2. P.S. Huang, C. J. Harris, and M. S. Nixon. Human gait recognition in canonical space using temporal templates. IEEE Procs. Vision Image and Signal Processing, 146(2):93–100, 1999. [CrossRef] [Google Scholar]
  3. J.J. Little and J.E. Boyd. Recognizing people by their gait: the shape of motion. Videre, 1(2), (1998) [Google Scholar]
  4. S. Sarkar, P. Phillips, Z. Liu, I. Vega, P. Grother, and K. Bowyer, “The HumanID gait challenge problem: data sets, performance, and analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 2, pp. 162–177, Feb. (2005) [CrossRef] [Google Scholar]
  5. M. Turk and A. Pentland, “Face recognition using eigenfaces,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., pp. 586–591. (1991) [Google Scholar]
  6. G.Veres, L. Gordon, J. Carter, and M. Nixon, “What image information is important in silhouette-based gait recognition?,” in Proc. IEEE Conf.Comput. Vision Pattern Recognit., pp. 776–782.,(2004) [Google Scholar]
  7. Z. Liu and S. Sarkar, “Simplest representation yet for gait recognition:averaged silhouette,” in Proc. IEEE Conf. Pattern Recognit., pp.211–214.(2004) [CrossRef] [Google Scholar]
  8. GW. I Scholhorn,. Nigg B.M, D.J.Stephanshyn, andW. Liu, “Identification of individual walking patterns using time discrete and time continuous data sets,” Gait and Posture, vol. 15, pp.180–186, (2002) [CrossRef] [Google Scholar]
  9. M.S. Nixon, J.N. Carter, J.M.Nash, P.S. Huang, D. Cunado, and S.V. Stevenage. Automatic gait recognition. In Motion Analysis and Tracking (Ref. No. 1999/103), IEE Colloquium on, pages 3/1–3/6, (1999) [Google Scholar]
  10. S. Mowdray and M. Nixon, “Extraction and recognition of periodically deforming objects by continuous, spatio-temporal shape description,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., pp.895–901(2004) [Google Scholar]
  11. Ross Cutler and Larry Davis. Robust real-time periodic motion detection, analysis, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):781 –796, (2000) [CrossRef] [Google Scholar]
  12. C. Stauffer andW.E.L. Grimson. Adaptive background mixture models for real-time tracking. In CVPR, 1999. [Google Scholar]
  13. R. Tanawongsuwan and A. Bobick, “Gait recognition from time-normalized joint-angle trajectories in the walking plane,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., pp. 726– 731. (2001) [Google Scholar]
  14. J. Han and B. Bhanu, “Statistical feature fusion for gait-based human recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit, pp. 842–847. (2004) [Google Scholar]
  15. D. Cunado, J.M. Nash, M.S. Nixon, and J. N. Carter, “Gait extraction and description by evidencegathering,” Proc. of the International Conference on Audio and Video Based Biometric Person Authentication, pp.43–48,(1995) [Google Scholar]
  16. L. Lee and W.E.L. Grimson, “Gait analysis for recognition and classification,” Proceedings of the IEEE Conference on Face and Gesture Recognition, pp. 155–161, (2002) [Google Scholar]
  17. A. Kale, N. Cuntoor, and R. Chellappa, “A framework for activity-specific human recognition,” Proceedings of the International Conference on Acoustics, Speech and Signal Processing (Orlando, FL), May (2002) [Google Scholar]
  18. Yu-Feng Li. James T.Kwok. Zhi-Hua Zhou. Cost-Sensitive Semi-Supervised Support Vector Machine. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.