Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03039
Number of page(s) 9
Section Digital Signal and Image Processing
DOI https://doi.org/10.1051/matecconf/201817303039
Published online 19 June 2018
  1. Jennifer U. Mills, Steven M. F. Stuban, and Jason Dever. Predict insider threats using human behaviors. IEEE Engineering Management Review, 45(1):39–48, 2017. [CrossRef] [Google Scholar]
  2. Ramkumar Chinchani, Duc Ha, Anusha Iyer, Hung Q. Ngo, and Shambhu Upadhyaya. Insider threat assessment: Model, analysis and tool. Network Security, pages 143–174, 2010. [CrossRef] [Google Scholar]
  3. Nathalie Baracaldo and James Joshi. An adaptive risk management and access control framework to mitigate insider threats. Computers and Security, 39(4):237–254, 2013. [CrossRef] [Google Scholar]
  4. Chee Wooi Ten, Chen Ching Liu, and Govindarasu Manimaran. Vulnerability assessment of cybersecurity for scada systems. IEEE Transactions on Power Systems, 23(4):1836–1846, 2008. [CrossRef] [Google Scholar]
  5. Mustafa Faisal, Alvaro A. Cardenas, and Avishai Wool. Modeling modbus tcp for intrusion detection. In Communications and Network Security, pages 386–390, 2017. [Google Scholar]
  6. Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner, and Alfonso Valdes. Using model-based intrusion detection for scada networks. Proceedings of the Scada Security Scientific Symposium, 2006. [Google Scholar]
  7. Niv Goldenberg and Avishai Wool. Accurate modeling of modbus/tcp for intrusion detection in scada systems. International Journal of Critical Infrastructure Protection, 6(2):63–75, 2013. [CrossRef] [Google Scholar]
  8. Amit Kleinmann and Avishai Wool. Accurate modeling of the siemens s7 scada protocol for intrusion detection and digital forensics. Journal of Digital Forensics Security and Law, 9(2):37–50, 2014. [Google Scholar]
  9. Y. Yang, K. Mclaughlin, T. Littler, S. Sezer, B. Pranggono, and H. F. Wang. Intrusion detection system for iec 60870-5-104 based scada networks. In Power and Energy Society General Meeting, pages 1–5, 2013. [Google Scholar]
  10. Jeyasingam Nivethan and Mauricio Papa. Dynamic rule generation for scada intrusion detection. In Technologies for Homeland Security, 2016. [Google Scholar]
  11. Hui Lin, Adam Slagell, Catello Di Martino, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Adapting bro into scada:building a specification-based intrusion detection system for the dnp3 protocol. In Eighth Cyber Security and Information Intelligence Research Workshop, pages 1–4, 2013. [Google Scholar]
  12. Payam Mahmoudi Nasr and Ali Yazdian Varjani. Petri net model of insider attacks in scada system. In International ISC Conference on Information Security and Cryptology, pages 55–60, 2014. [Google Scholar]
  13. Payam Mahmoudi Nasr and Ali Yazdian Varjani. Alarm based anomaly detection of insider attacks in scada system. In Smart Grid Conference, pages 1–6, 2015. [Google Scholar]
  14. Justin M. Beaver, Raymond C. Borges-Hink, and Mark A. Buckner. An evaluation of machine learning methods to detect malicious scada communications. In International Conference on Machine Learning and Applications, pages 54–59, 2014. [Google Scholar]
  15. Marco Caselli, Dina Had?iosmanovi?, Emmanuele Zambon, and Frank Kargl. On the Feasibility of Device Fingerprinting in Industrial Control Systems. Springer International Publishing, 2013. [Google Scholar]
  16. David Formby, Preethi Srinivasan, Andrew Leonard, Jonathan Rogers, and Raheem Beyah. Who’s in control of your control system? device fingerprinting for cyber-physical systems. In Network and Distributed System Security Symposium, 2016. [Google Scholar]
  17. Dayu Yang, Alexander Usynin, and J Wesley Hines. Anomaly-based intrusion detection for scada systems. 2006. [Google Scholar]
  18. Bill Miller and Dale Rowe. A survey scada of and critical infrastructure incidents. In Conference on Research in Information Technology, pages 51–56, 2012. [Google Scholar]
  19. P. C Mahalanobis. On the generalized distance in statistics. Proceedings of the National Institute of Sciences, 2:49–55, 1936. [Google Scholar]
  20. Z-Score Model. Springer US, 2006. [Google Scholar]
  21. Dimitrios Ververidis and Constantine Kotropoulos. Information loss of the mahalanobis distance in high dimensions: Application to feature selection. IEEE Transactions on Pattern Analysis adn Machine Intelligence, 31(12):2275–81, 2009. [CrossRef] [Google Scholar]
  22. R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart. The mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 50(1):1–18, 2000. [Google Scholar]
  23. G. W. Stewart. On the early history of the singular value decomposition. Society for Industrial and Applied Mathematics, 1993. [Google Scholar]
  24. K. Zhang. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 16(6):2112, 1996. [CrossRef] [Google Scholar]
  25. D. M. Hawkins. Identification of outliers. Biometrics, 37(4):860, 1980. [Google Scholar]
  26. Iaki Garitano, Roberto Uribeetxeberria, and Urko Zurutuza. A review of scada anomaly detection systems. In Soft Computing MODELS in Industrial and Environmental Applications, International Conference Soco 2011, 6-8 April, 2011,Salamanca, Spain, pages 357–366, 2011. [Google Scholar]
  27. Jeffrey M Stanton, Kathryn R Stam, Paul Mastrangelo, and Jeffrey Jolton. Analysis of end user security behaviors. Computers and Security, 24(2):124–133, 2005. [CrossRef] [Google Scholar]
  28. Matthew Tischer, Zakir Durumeric, Sam Foster, Sunny Duan, Alec Mori, Elie Bursztein, and Michael Bailey. Users really do plug in usb drives they find. In Security and Privacy, pages 306–319, 2016. [Google Scholar]
  29. Xiaojun Zhou, Zhen Xu, Liming Wang, and Kai Chen. What should we do? a structured review of scada system cyber security standards. Proceedings of 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT’17), pages 0605 – 0614, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.