Open Access
Issue
MATEC Web of Conferences
Volume 172, 2018
3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS 2018)
Article Number 03008
Number of page(s) 7
Section Design Engineering
DOI https://doi.org/10.1051/matecconf/201817203008
Published online 12 June 2018
  1. D. Camara, Cavalry to the Rescue : Antibes Juan-les-Pins, (2014). [Google Scholar]
  2. K. Nagatani et al., IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR, (2013). [Google Scholar]
  3. Nathan Michael et al., Field and Service Robotics: Results of the 8th Int. Conf., 92,33-47, (2013). [CrossRef] [Google Scholar]
  4. P. Fankhauser et al., IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, (2016). [Google Scholar]
  5. S. Kuswadi, M. N. Tamara, D. A. Sahanas, G. I. Islami, and S. Nugroho, Int. Conf. Knowl. Creat. Intell. Comput. KCIC, 80–87, (2016). [Google Scholar]
  6. R. Murphy et al., Handbook of Robotics, 1162-1163,2008. [Google Scholar]
  7. J. Carlson and R. R. Murphy, IEEE Trans. Robot., 21, 423–437, (2005). [CrossRef] [Google Scholar]
  8. M. J. Micire, J. F. Robot., 25, 17–30, (2008). [Google Scholar]
  9. Y. Ichikawa, N. Ozaki, and K. Sadakane, IEEE Trans. Syst. Man Cybern., (1983). [Google Scholar]
  10. A. S. Boxerbaum, P. Werk, R. D. Quinn, and R. Vaidyanathan, IEEE/ASME Int. Conf. on Advanced Intell. Mechatronics, 1459–1464, (2005). [Google Scholar]
  11. J. R. Page and P. E. I. Pounds, IEEE Int. Conf. Intell. Robot. Syst., 4834–4841, (2014). [Google Scholar]
  12. C. J. Pratt and K. K. Leang, Proc. - IEEE Int. Conf. Robot. Autom., 3267–3274, (2016). [Google Scholar]
  13. R. J. Lock, R. Vaidyanathan, and S. C. Burgess, Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, 681–687, (2012). [Google Scholar]
  14. A. Kossett, J. Purvey, and N. Papanikolopoulos, IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, 5653–5658, (2009). [Google Scholar]
  15. M. C. Pitonyak, Syst. of Systems Engineering Conf. (SoSE), (2017). [Google Scholar]
  16. A. Kalantari and M. Spenko, Proc. - IEEE Int. Conf. Robot. Autom., 4445–4450, (2013). [Google Scholar]
  17. K. P. Valavanis and G. J. Vachtsevanos, Handb. Unmanned Aer. Veh., 1–3022, (2015). [Google Scholar]
  18. Kar, D. C., J. Robotic Syst., 671–686, (2003) [CrossRef] [Google Scholar]
  19. S. Hirose, Some considerations on a feasible walking mechanism as a terrain vehicle, 3rd CISM-IFToMM Int. Symp. on Theory and Practice of Robots and Manipulators, 357–375, (1978). [Google Scholar]
  20. P. I. Corke, Robotics, Vision & Control : Fundamental Algorithms in Matlab, Springer, (2011). [CrossRef] [Google Scholar]
  21. M. F. Silva, Quadruped robot optimization using a generic algorithm, 11th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR’11,11–26, (2011). [Google Scholar]
  22. R. J. Bachmann, F. J. Boria, P. G. Ifju, R. D. Quinn, J. E. Kline, and R. Vaidyanathan, IEEE Int. Conf. Intell. Robot. Syst., 24–28, (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.