Issue |
MATEC Web of Conferences
Volume 172, 2018
3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS 2018)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 7 | |
Section | Design Engineering | |
DOI | https://doi.org/10.1051/matecconf/201817203008 | |
Published online | 12 June 2018 |
Kinematic Design, Analysis and Simulation of a Hybrid Robot with Terrain and Aerial Locomotion Capability
1
Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
2
Lincoln Centre for Autonomous Systems, School of Computer Science, University of Lincoln, United Kingdom
* Corresponding author: sreevishnus18@yahoo.com
Having only one type of locomotion mechanism limits the stability and locomotion capability of a mobile robot on irregular terrain surfaces. One of the possible solution to this is combining more than one locomotion mechanisms in the robot. In this paper, robotic platform composed of a quadruped module for terrain locomotion and quadrotor module for aerial locomotion is introduced. This design is inspired by the way which birds are using their wings and legs for stability in slopped and uneven surfaces. The main idea is to combine the two systems in such a way that the strengths of both subsystems are used, and the weakness of the either systems are covered. The ability of the robot to reach the target position quickly and to avoid large terrestrial obstacles by flying expands its application in various areas of search and rescue. The same platform can be used for detailed 3D mapping and aerial mapping which are very helpful in rescue operations. In particular, this paper presents kinematic design, analysis and simulation of such a robotic system. Simulation and verification of results are done using MATLAB.
Key words: Hybrid mobile robot / search and rescue / legged flying robot
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.