Open Access
Issue
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 05011
Number of page(s) 11
Section Experimental mechanics, identification and validation
DOI https://doi.org/10.1051/matecconf/201815705011
Published online 14 March 2018
  1. A. S. Lima, A. M. Nascimento, Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347. Journal of Materials Science 40, 139-144 (2005) [CrossRef] [Google Scholar]
  2. E. Kocsisová, M. Dománková, I. Slatkovský, M. Sahul, Study of the sensitization on the grain boundary in austenitic stainless steel AISI 316. Research papers Faculty of Materials Science and Technology in Trnava 22, 131-136 (2014) [Google Scholar]
  3. T. Sourmail, Review: Precipitation In Creep-Resistant Austenitic Stainless Steels. Materials Science and Technology 17, 1-14 (2001) [CrossRef] [Google Scholar]
  4. E. G. Na, Evaluation of sensitization and corrosive damages of the weldment for SUS 316stainlesssteel. Journ. of Mech. Science and Technology 27, 2715-2719 (2013) [CrossRef] [Google Scholar]
  5. N. Parvathavarthini, R. K. Dayal, Time-temperature sensitization diagrams and critical cooling rates of different nitrogen containing austenitic stainless steels. Journal of Nuclear Materials 399, 62-67 (2010) [CrossRef] [Google Scholar]
  6. H. Shaikh, N. Sivaibharasi, B. Sasi, T. Anita, R. Amirthalingan, B. P. C. Rao, T. Jayakumar, H. S. Khatak, B. Raj, Use of eddy current testing method in detection and evaluation of sensitisation and intergranular corrosion in austenitic stainless steels. Corrosion Science 48, 1462-1482 (2006) [CrossRef] [Google Scholar]
  7. N. Parvathavarthini, S. Mulki, R. K. Dayal, I. Samajdar, K. V. Mani, B. Raj, Sensitization control in AISI 316L(N) austenitic stainless steel: Defining the role of the nature of grain boundary. Corrosion Science 51, 2144-2150 (2009) [CrossRef] [Google Scholar]
  8. F. Nový, V. Zatkalíková, O. Bokůvka, K. Miková, Gigacycle Fatigue Endurance of Marine Grade Stainless Steels with Corrosion Pits. Periodica Polytechnica Transportation Engineering 41/2, 99-103 (2013) [CrossRef] [Google Scholar]
  9. L. Trško, M. Guagliano, O. Bokůvka, F. Nový, M. Jambor, Z. Florková, Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy. Journal of Materials Engineering and Performance 26 (6), 2784-2797 (2017) [CrossRef] [Google Scholar]
  10. L. Trško, O. Bokůvka, F. Nový, M. Guagliano, Effect of severe shot peening on ultrahigh cycle fatigue of low-alloy steel. Materials & Design 57, 103-113 (2014) [Google Scholar]
  11. M. Sága, P. Kopas, M. Uhričík, Modeling and Experimental Analysis of the Aluminium Alloy Fatigue Damage in the case of Bending - Torsion Loading. Modelling of Mechanical and Mechatronics Systems, Procedia Engineering 48, 599-606 (2012) [Google Scholar]
  12. C. Műller-Bollenhagen, M. Zimmermann, H. J. Christ, Very high cycle fatige behaviour of austenitic stainless steel and the effect of strain-induced martensite. International Journal of Fatigue 32, 936-942 (2010) [Google Scholar]
  13. J. Kohout, S. Věchet, A new function for fatigue curves characterization and its multiple merits. International Journal of Fatigue 23, 175-183 (2001) [CrossRef] [Google Scholar]
  14. K. Takahashi, T. Ogawa, Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test. Journal of Solid Mechanics and Materials Engineering 72/723A, 1731-1736 (2006) [Google Scholar]
  15. O. K. Chopra, Mechanism of Fatigue Crack Initiaion in Austenitic Stainless Steels in Light Water Reactor Environments. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology, 1-8 (2003) [Google Scholar]
  16. P. Atanda, A. Fatudimu, O. Olowole, Sensitisation study of normalized 316L stainless steel. Journal of Minerals & Materials Characterization & Engineering 9 (1), 13-23 (2010) [CrossRef] [Google Scholar]
  17. T. Naoe, Z. Xiong, M. Futakawa, Gigacycle fatigue behavior of austenitic stainless steels used for mercury target vessels. Journal of Nuclear Materials 468, 331-338 (2016) [Google Scholar]
  18. M. Akita et al., Effect of sensitization on corrosion fatigue behavior of type 304 stainless steel annealed in nitrogen gas. Material Science & Engineering A 640, 33-41 (2015) [CrossRef] [Google Scholar]
  19. J. Lago, M. Jambor, F. Nový, O. Bokůvka, L. Trško, Giga-cycle fatigue of AISI 316L after Sensitising of structure. Procedia Engineering 192, 528-532 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.