Issue |
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
|
|
---|---|---|
Article Number | 05011 | |
Number of page(s) | 11 | |
Section | Experimental mechanics, identification and validation | |
DOI | https://doi.org/10.1051/matecconf/201815705011 | |
Published online | 14 March 2018 |
Influence of structure sensitising of the AlSi 316Ti austenitic stainless steel on the ultra-high cycle fatigue properties
1
University of Zilina, Faculty of Mechanical Engineering, Department of Material Engineering, Univerzitná 1, 010 26, Zilina, Slovak Republic
2
Research Centre of the University of Žilina, Univerzitná 1, 010 26, Zilina, Slovak Republic
* Corresponding author: michal.jambor@fstroj.uniza.sk
Austenitic stainless steels are the wide-spread materials, used mainly in the power industry. In that kind of engineering application, structural parts of rotating elements reach during their lifetime very high numbers of loading cycles, exceeding 107 numbers of cycles. With regard to this fact, the data of ultra-high cycle fatigue properties are needed to be used in the qualified design. Increasing demands on the efficiency cause the increase of the operating temperature, and exposition of these materials to the elevated temperatures can cause some important structural changes, which result in the sensitising of the structure. In this study authors present their own experimental results about fatigue properties of AISI 316Ti austenitic stainless steel after sensitising, in the ultra-high cycle region (Nf = 106 ~ Nf = 3×109 cycles). Fatigue tests were carried out using ultrasonic fatigue testing device with frequency f = 20 kHz at the coefficient of cycle asymmetry R = -1, and temperature T = 20±5°C. In the ultra-high cycle region was observed the continuous decrease of the fatigue properties of the AISI 316Ti, and there was recorded the negative effect of the sensitising on the ultra-high cycle fatigue properties of the AISI 316Ti.
Key words: AISI 316Ti / sensitisation / ultra-high cycle fatigue
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.