Open Access
Issue
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
Article Number 03001
Number of page(s) 17
Section Structural Engineering
DOI https://doi.org/10.1051/matecconf/201825003001
Published online 11 December 2018
  1. G. Sendeckyj, “Early Railroad Accidents and the Origins of Research on Fatigue of Metals.,” Mater. Manuf. Dir. Air Force Res. Lab. Wright-Patterson Air Force Base, 2006. [Google Scholar]
  2. E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, and S. Spigarelli, “A Review on Fatigue Life Prediction Methods for Metals.,” Adv. Mater. Sci. Eng., 2016. [Google Scholar]
  3. L. Bisby, H. Mostafaei, and P. Pimienta, “State-of-the-art on Fire Resistance of Concrete Structure-Fire Model Validation.,” NIST-Special Publ. Int. R&D Road Map Fire Resist. Struct., 2014. [Google Scholar]
  4. P. A. Buchan and J. F. Chen, “Blast Protection of buildings using fibre-reinforced polymer (FRP) composites.,” Blast Prot. Build. using Fibre-Reinforced Polym. Compos., pp. 269–297, 2010. [Google Scholar]
  5. L. Susmel, “High-cycle Fatigue of Notched Plain Concrete,” in Procedia Structural Integrity XV Portuguese Conference on Fracture, PCF 2016, 2016, vol. 2, pp. 3447–3458. [Google Scholar]
  6. D. M. Frangopol, M. Akiyama, and H. Furuta, Life-cycle of structural systems: Design, Assessment, Maintenance and Management. CRC Press, 2014. [Google Scholar]
  7. L. Susmel and D. Taylor, “A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-Cycle Fatigue Regime,” Fatigue Fract. Eng. Mater. Struct., vol. 30, no. 7, pp. 567–581, 2007. [CrossRef] [Google Scholar]
  8. W. D. Pilkey, Peterson’s Stress Concentration Factors. Wiley, New York, 1997. [CrossRef] [Google Scholar]
  9. A. Fatemi, “Fundamentals of LEFM and Applications to Fatigue Crack Growth,” in University of Toledo, 2010, p. 133. [Google Scholar]
  10. L. Susmel, “The Theory of Critical Distances: A Review of Its Applications in Fatigue,” Eng. Fract. Mech., vol. 75, no. 7, pp. 1706–1724, 2008. [CrossRef] [Google Scholar]
  11. L. Ceriolo and A. Di Tommaso, “Fracture Mechanics of Brittle Materials: A Historical Point Of View.,” in 2nd Symposium in Civil Engineering, Budapest, 1998. [Google Scholar]
  12. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, vol. 58, no. 1. 2017. [CrossRef] [Google Scholar]
  13. J. Sutherland, R. J. Sutherland, H. Dawn, and M. Chrimes, Historic Concrete: Background to Appraisal. Thomas Telford, 2001. [CrossRef] [Google Scholar]
  14. K. Stamoulis and A. E. Giannakopoulos, “Size Effects on Strength, Toughness and Fatigue Crack Growth of Gradient Elastic Solids,” Int. J. Solids Struct., vol. 45, no. 18–19, pp. 4921–4935, 2008. [CrossRef] [Google Scholar]
  15. O. Jadallah, C. Bagni, H. Askes, and L. Susmel, “Microstructural Length Scale Parameters to model the High Cycle Fatigue Behaviour of Notched Plain Concrete,” Int. J. Fatigue, vol. 82, pp. 708–720, 2016. [CrossRef] [Google Scholar]
  16. L. Susmel, “Nominal Stresses and Modified Wöhler Curve Method to perform the Fatigue Assessment of Uniaxially Loaded inclined Welds,” in Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, vol. 228, no. 16, pp. 2871–2880. [CrossRef] [Google Scholar]
  17. R. Daud, A. Ahmad Kamal, S. Abdullah, and A. E. Ismail, “Fatigue Failure Analysis using The Theory of Critical Distance,” Key Eng. Mater., vol. 462–463, pp. 663–667, 2011. [CrossRef] [Google Scholar]
  18. D. Taylor, “Analysis of Fatigue Failures in Components using the Theory of Critical Distances,” Eng. Fail. Anal., vol. 12, no. 6, pp. 906–914, 2005. [CrossRef] [Google Scholar]
  19. L. Susmel and D. Taylor, “Two Methods for Predicting the Multiaxial Fatigue Limits to Sharp Notches,” Fatigue Fract. Eng. Mater. Struct., vol. 26, no. 9, pp. 821–833, 2003. [CrossRef] [Google Scholar]
  20. H. Askes, P. Livieri, L. Susmel, D. Taylor, and R. Tovo, “Intrinsic Material Length, Theory of Critical Distances and Gradient Mechanics: Analogies and Differences in Processing Linear‐Elastic Crack Tip Stress Fields,” Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 1, pp. 39–55, 2013. [CrossRef] [Google Scholar]
  21. D. Taylor, “Predicting the Fracture Strength of Ceramic Materials using the Theory of Critical Distances,” Eng. Fract. Mech., vol. 71, no. 16–17, pp. 2407–2416, 2004. [CrossRef] [Google Scholar]
  22. D. Taylor, M. Merlo, R. Pegley, and M. Cavatorta, “The Effect of Stress Concentrations on the Fracture Strength of Polymethylmethacrylate,” Mater. Sci. Eng. A, vol. 382, no. 1–2, pp. 288–294, 2004. [CrossRef] [Google Scholar]
  23. D. Taylor, P. Cornetti, and N. Pugno, “The Fracture Mechanics of Finite Crack Extension,” Eng. Fract. Mech., vol. 72, no. 7, pp. 1021–1038, 2005. [CrossRef] [Google Scholar]
  24. D. Taylor, “The Theory of Critical Distances Applied to the Prediction of Brittle Fracture in Metallic Materials,” Struct. Integr. Durab., vol. 1, no. 2, pp. 1–9, 2006. [Google Scholar]
  25. T. Hattori, A. W. M.A.B., T. Ishida, and M. Yamashita, “Fretting Fatigue Life Estimations based on the Critical Distance Stress Theory.,” Procedia Eng., vol. 10, pp. 3134–3139, 2011. [CrossRef] [Google Scholar]
  26. D. Taylor, S. Kasiri, and E. Brazel, “The Theory of Critical Distances applied to Problems in Fracture and Fatigue of Bone.,” Atti del XX Convegno Naz. del Grup. Ital. Frat., p. 11, 2009. [Google Scholar]
  27. R. Louks and L. Susmel, “The Linear-Elastic Theory of Critical Distances to estimate High-Cycle Fatigue Strength of Notched Metallic Materials at Elevated Temperatures,” Fatigue Fract. Eng. Mater. Struct., vol. 38, no. 6, pp. 629–640, 2015. [CrossRef] [Google Scholar]
  28. L. Susmel, “A Unifying Approach to estimate the High‐Cycle Fatigue Strength of Notched Components subjected to both Uniaxial and Multiaxial Cyclic Loadings,” Fatigue Fract. Eng. Mater. Struct., vol. 27, no. 5, pp. 391–411, 2004. [CrossRef] [Google Scholar]
  29. L. Susmel and D. Taylor, “A Simplified Approach to apply the Theory of Critical Distances to Notched Components under Torsional Fatigue Loading,” Int. J. Fatigue, vol. 28, no. 4, pp. 417–430, 2006. [CrossRef] [Google Scholar]
  30. F. Pessot, L. Susmel, and D. Taylor, “The Theory of Critical Distances to predict Static Strength of Notched Brittle Components subjected to Mixed-mode Loading,” Eng. Fract. Mech., vol. 75, no. 3–4, pp. 534–550, 2008. [CrossRef] [Google Scholar]
  31. R. Louks, H. Askes, and L. Susmel, “Static Assessment of Brittle/Ductile Notched Materials: An Engineering Approach based on the Theory of Critical Distances,” Frat. ed Integrita Strutt., vol. 30, pp. 23–30, 2014. [CrossRef] [Google Scholar]
  32. I. Pelekis and L. Susmel, “The Theory of Critical Distances to estimate static and dynamic strength of notched plain concrete,” Procedia Struct. Integr., vol. 2, pp. 2006–2013, 2016. [CrossRef] [Google Scholar]
  33. A. Hillerborg, M. Modéer, and P. E. Petersson, “Analysis of Crack Formation and Crack Growth in Concrete by means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976. [CrossRef] [Google Scholar]
  34. Y. S. Jenq and S. Shah, “Features of Mechanics of Quasi-Brittle Crack Propagation in Concrete,” Curr. Trends Concr. Fract. Res., no. Springer, Dordrecht, pp. 103–120, 1991. [CrossRef] [Google Scholar]
  35. Z. P. Bazant and B. H. Oh, “Deformation of Progressively Cracking Reinforced Concrete Beams,” J. Am. Concr. Inst., vol. 3, no. 81, pp. 268–278, 1984. [Google Scholar]
  36. B. Karihaloo, Fracture Mechanics & Structural Concrete, Concrete D. 1995. [Google Scholar]
  37. X. Gao, G. Koval, and C. Chazallon, “A Size and Boundary Effects Model for Quasi-Brittle Fracture,” Materials (Basel)., vol. 9, no. 12, p. 1030, 2016. [CrossRef] [Google Scholar]
  38. G. A. Rao and B. R. Prasad, “Influence of the Roughness of Aggregate Surface on the Interface Bond Strength,” Cem. Concr. Res., vol. 32, no. 2, pp. 253–257, 2002. [CrossRef] [Google Scholar]
  39. X. Hu, J. Guan, Y. Wang, A. Keating, and S. Yang, “Comparison of boundary and size effect models based on new developments,” Eng. Fract. Mech., vol. 175, pp. 146–167, 2017. [CrossRef] [Google Scholar]
  40. J. Guan, X. Hu, and Q. Li, “In-depth Analysis of Notched 3-p-b Concrete Fracture,” Eng. Fract. Mech., vol. 165, pp. 57–71, 2016. [CrossRef] [Google Scholar]
  41. Q. Yu, J.-L. Le, C. G. Hoover, and Z. P. Bažant, “Problems with Hu-Duan Boundary Effect Model and Its Comparison to Size-Shape Effect Law for Quasi-Brittle Fracture,” J. Eng. Mech., vol. 136, no. 1, pp. 40–50, 2009. [CrossRef] [Google Scholar]
  42. J. P. Lloyd, J. L. Lott, and C. E. Kesler, “Lloyd, J.P., Lott, J.L. and Kesler, C.E.,” Univ. Illinois Urbana Champaign, Coll. Eng., no. Engineering Experiment Station, 1968. [Google Scholar]
  43. A. A. Wells, George Rankin Irwin: 26 February 1907—9 October 1998. 2000. [Google Scholar]
  44. A. T. Zehnder, Fracture Mechanics, Lecture No. Springer, 2012. [CrossRef] [Google Scholar]
  45. K. E. Kurrer, “The History of the Theory of Structures: From Arch Analysis to Computational Mechanics,” Int. J. Sp. Struct., vol. 23, no. 3, pp. 193–197, 2008. [CrossRef] [Google Scholar]
  46. The Aberdeen Group, “Some Notes on Concrete Fatigue,” #C620293, 1962. [Google Scholar]
  47. H. W. Reinhardt, D. A. Hordijk, and H. A. Cornelissen, “Tensile Tests and Failure Analysis of Concrete,” J. Struct. Eng., vol. 112, no. 11, pp. 2462–2477, 1986. [CrossRef] [Google Scholar]
  48. Z. P. Bazant and K. Xu, “Size Effect in Fatigue Fracture of Concrete,” ACI Mater. J., vol. 88, no. 4, pp. 390–399, 1991. [Google Scholar]
  49. A. Milenkovic and M. Pluis, “Fatigue of Normal-weight Concrete and Light-weight Concrete,” 2000. [Google Scholar]
  50. P. B. Cachim, J. A. Figueiras, and P. A. A Pereira, “Fatigue Behavior of Fiber-Reinforced Concrete in Compression,” Cem. Concr. Compos., vol. 24, no. 2, pp. 211–217, 2002. [CrossRef] [Google Scholar]
  51. J. Zhang and Q. Liu, “Determination of Concrete Fracture Parameters from a Three-Point Bending Test,” Tsinghua Sci. Technol., vol. 8, no. 6, pp. 726–733, 2003. [Google Scholar]
  52. C. Gaedicke, J. Roesler, and S. Shah, “Fatigue Crack Growth prediction in Concrete Slabs,” Int. J. Fatigue, vol. 31, no. 8–9, pp. 1309–1317, 2009. [CrossRef] [Google Scholar]
  53. P. Stroeven, “Low-cycle Compression Fatigue of Reinforced Concrete Structures,” Procedia Eng., vol. 2, no. 1, pp. 309–314, 2010. [CrossRef] [Google Scholar]
  54. F. Aslani and R. Jowkarmeimandi, “Stress–strain Model for concrete under Cyclic Loading,” Mag. Concr. Res., vol. 64, no. 8, pp. 673–685, 2012. [CrossRef] [Google Scholar]
  55. Y. Wang, X. Hu, L. Liang, and W. Zhu, “Determination of Tensile Strength and Fracture Toughness of Concrete using Botched 3-p-b Specimens,” Eng. Fract. Mech., vol. 160, pp. 67–77, 2016. [CrossRef] [Google Scholar]
  56. S. Ayyad and M. Alawneh, “Effect of Concrete Parameters on Local Fracture Energy of Concrete,” Int. J. Appl. Eng. Res., vol. 12, no. 5, pp. 793–796, 2017. [Google Scholar]
  57. L. Susmel, Multiaxial Notch Fatigue. Elsevier, 2009. [CrossRef] [Google Scholar]
  58. G. Crupi and D. Taylor, “Residual Stresses and Fatigue Prediction Using the Theory of Critical Distances,” Stress, vol. 50, no. 2, 2004. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.