Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 13004 | |
Number of page(s) | 9 | |
Section | Notch | |
DOI | https://doi.org/10.1051/matecconf/201930013004 | |
Published online | 09 December 2019 |
The elasto-plastic Point Method to estimate fatigue lifetime of notched metallic materials under variable amplitude multiaxial fatigue loading
Department of Civil and Structural Engineering, The University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
* Corresponding author: l.susmel@sheffield.ac.uk
The present paper deals with the formulation and implementation of a novel fatigue lifetime estimation technique suitable for designing notched components against multiaxial fatigue. This fatigue assessment procedure was devised by combining the Modified Manson-Coffin Curve Method and the Shear Strain-Maximum Variance Method with the elasto-plastic Point Method. The accuracy of the approach being proposed was checked against a large number of experimental results that were generated by testing notched cylindrical samples of medium-carbon steel En8. These tests were run under proportional/non-proportional constant/variable amplitude biaxial loading, with the effect of non-zero mean stresses and different frequencies between the axial and torsional stress/strain components being also investigated. The results from this validation exercise demonstrate that the novel multiaxial fatigue assessment methodology being proposed is highly accurate, with its systematic usage resulting in predictions falling within an error factor of 2. This remarkable level of accuracy is very promising especially in light of the fact that this approach can be applied by directly post-processing the results from elasto-plastic Finite Element (FE) models solved using commercial codes.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.