Issue |
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 17 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201825003001 | |
Published online | 11 December 2018 |
A review on the application of the theory of critical distance towards concrete
1
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
2
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
* Corresponding author: mohamadshazwan.ahmadshah@gmail.com
Theory of Critical Distance (TCD) is one of Fracture Mechanics numerical model that has gone through tremendous laboratory works and validation. Hence, it has been proven to be precise in broad perspectives in the field. Recently, TCD research related to fracture, especially fatigue on concrete are growing but the depth of study is still shallow and deficient compared to metal and steel. Thus, this made the fracture assessment in concrete obscures and governs by uncertainties. Previous efforts have managed to optimize TCD but the results only valid if the water-cement ratio of a concrete specimen in its optimum level. When the water-cement ratio is adjusted to a higher or lower from its optimum level, the output errors showed inconsistency as reported by Luca Susmel (2016). Therefore, this research aims to optimize the Theory of Critical Distance (TCD) by incorporating water-cement ratio and the interaction of microstructure matrix. The optimization involves few stages and finite element. If Theory of Critical Distance (TCD) can be improved by considering concrete’s additional element in its mathematical expression, it will definitely contribute to betterment in assessing concrete infrastructure around the globe.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.