Open Access
Issue
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
Article Number 01018
Number of page(s) 13
Section Geotechnical Engineering
DOI https://doi.org/10.1051/matecconf/201825001018
Published online 11 December 2018
  1. S. L. Kramer, Geotechnical Earthquake Engineering. Upper Saddle River, New Jersey USA: Prentice Hall, 1996. [Google Scholar]
  2. Y. Li, “Mitigation of sand liquefaction using in situ production of biogas with biosealing,” pp. 1–48, 2014. [Google Scholar]
  3. J. He and J. Chu, “Undrained Responses of Microbially Desaturated Sand under Monotonic Loading,” J. Geotech. Geoenvironmental Eng., vol. 140, no. 5, p. 4014003, 2014. [CrossRef] [Google Scholar]
  4. H. Zhiguang, C. Xiaohui, and M. Qiang, “An experimental study on dynamic response for MICP strengthening liquefiable sands,” vol. 15, no. 4, pp. 673–679, 2016. [Google Scholar]
  5. B. M. Montoya, J. T. DeJong, and R. W. Boulanger, “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation,” Géotechnique, vol. 63, no. 4, pp. 302–312, 2013. [CrossRef] [Google Scholar]
  6. K. Feng and B. M. Montoya, “Quantifying Level of Microbial-Induced Cementation for Cyclically Loaded Sand,” J. Geotech. Geoenvironmental Eng., vol. 143, no. 6, p. 6017005, 2017. [CrossRef] [Google Scholar]
  7. S. T. O’Donnell, B. E. Rittmann, and E. Kavazanjian, “MIDP: Liquefaction Mitigation via Microbial Denitrification as a Two-Stage Process. I: Desaturation,” J. Geotech. Geoenvironmental Eng., vol. 143, no. 12, p. 4017094, 2017. [CrossRef] [Google Scholar]
  8. J. T. DeJong, M. B. Fritzges, and K. Nüsslein, “Microbially Induced Cementation to Control Sand Response to Undrained Shear,” J. Geotech. Geoenvironmental Eng., vol. 132, no. 11, pp. 1381–1392, 2006. [CrossRef] [Google Scholar]
  9. J. K. Mitchell and J. C. Santamarina, “Biological Considerations in Geotechnical Engineering,” J. Geotech. Geoenvironmental Eng., vol. 131, no. 10, pp. 1222–1233, 2005. [CrossRef] [Google Scholar]
  10. C. Qian, R. Wang, L. Cheng, and J. Wang, “Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects,” Chinese J. Chem., vol. 28, no. 5, pp. 847–857, 2010. [CrossRef] [Google Scholar]
  11. V. Achal, A. Mukerjee, and M. Sudhakara Reddy, “Biogenic treatment improves the durability and remediates the cracks of concrete structures,” Constr. Build. Mater., vol. 48, pp. 1–5, 2013. [CrossRef] [Google Scholar]
  12. W. De Muynck, D. Debrouwer, N. De Belie, and W. Verstraete, “Bacterial carbonate precipitation improves the durability of cementitious materials,” Cem. Concr. Res., vol. 38, no. 7, pp. 1005–1014, 2008. [CrossRef] [Google Scholar]
  13. S. Wu, Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method. Iowa State University: Graduate Theses and Dissertations. 14728., 2015. [Google Scholar]
  14. J. T. DeJong, B. M. Mortensen, B. C. Martinez, and D. C. Nelson, “Bio-mediated soil improvement,” Ecol. Eng., vol. 36, no. 2, pp. 197–210, 2010. [CrossRef] [Google Scholar]
  15. S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, “Microbiological precipitation of CaCO3,” Soil Biol. Biochem., vol. 31, no. 11, pp. 1563–1571, 1999. [CrossRef] [Google Scholar]
  16. A. J. Phillips, R. Gerlach, E. Lauchnor, A. C. Mitchell, A. B. Cunningham, and L. Spangler, “Engineered applications of ureolytic biomineralization: A review,” Biofouling, vol. 29, no. 6, pp. 715–733, 2013. [CrossRef] [Google Scholar]
  17. N. K. Dhami, M. S. Reddy, and M. S. Mukherjee, “Biomineralization of calcium carbonates and their engineered applications: A review,” Front. Microbiol., vol. 4, no. OCT, pp. 1–13, 2013. [CrossRef] [PubMed] [Google Scholar]
  18. B. Lian, Q. Hu, J. Chen, J. Ji, and H. H. Teng, “Carbonate biomineralization induced by soil bacterium Bacillus megaterium,” Geochim. Cosmochim. Acta, vol. 70, no. 22, pp. 5522–5535, 2006. [CrossRef] [Google Scholar]
  19. P. Anbu, C. H. Kang, Y. J. Shin, and J. S. So, “Formations of calcium carbonate minerals by bacteria and its multiple applications,” Springerplus, vol. 5, no. 1, pp. 1–26, 2016. [CrossRef] [Google Scholar]
  20. M. Umar, K. A. Kassim, and P. C. T Kenny, “Biological process of soil improvement in civil engineering: A review,” J. Rock Mech. Geotech. Eng., vol. 8, no. 5, pp. 767–774, 2016. [CrossRef] [Google Scholar]
  21. F. Hammes, N. Boon, J. De Villiers, W. Verstraete, S. D. Siciliano, and J. De Villiers, “Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation,” Appl. Environ. Microbiol., vol. 69, no. 8, pp. 4901–4909, 2003. [CrossRef] [Google Scholar]
  22. A. C. Mitchell and F. G. Ferris, “The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence,” Geochim. Cosmochim. Acta, vol. 69, no. 17, pp. 4199–4210, 2005. [CrossRef] [Google Scholar]
  23. G. D. O. Okwadha and J. Li, “Optimum conditions for microbial carbonate precipitation,” Chemosphere, vol. 81, no. 9, pp. 1143–1148, 2010. [CrossRef] [Google Scholar]
  24. V. Achal and X. Pan, “Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2,” Appl. Biochem. Biotechnol., vol. 173, no. 1, pp. 307–317, 2014. [CrossRef] [Google Scholar]
  25. C. H. Kang, J. H. Choi, J. G. Noh, D. Y. Kwak, S. H. Han, and J. S. So, “Microbially Induced Calcite Precipitation-based Sequestration of Strontium by Sporosarcina pasteurii WJ-2,” Appl. Biochem. Biotechnol., vol. 174, no. 7, pp. 2482–2491, 2014. [CrossRef] [Google Scholar]
  26. V. Achal, A. Mukherjee, P. C. Basu, and M. S. Reddy, “Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production,” J. Ind. Microbiol. Biotechnol., vol. 36, no. 7, pp. 981–988, 2009. [CrossRef] [Google Scholar]
  27. D. Sarda, H. S. Choonia, D. D. Sarode, and S. S. Lele, “Biocalcification by Bacillus pasteurii urease: A novel application,” J. Ind. Microbiol. Biotechnol., vol. 36, no. 8, pp. 1111–1115, 2009. [CrossRef] [PubMed] [Google Scholar]
  28. V. Achal, A. Mukherjee, and M. S. Reddy, “Effect of calcifying bacteria on permeation properties of concrete structures,” J. Ind. Microbiol. Biotechnol., vol. 38, no. 9, pp. 1229–1234, 2011. [CrossRef] [Google Scholar]
  29. N. K. Dhami, M. S. Reddy, and A. Mukherjee, “Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials,” World J. Microbiol. Biotechnol., vol. 29, no. 12, pp. 2397–2406, 2013. [CrossRef] [Google Scholar]
  30. N. K. Dhami, M. S. Reddy, and A. Mukherjee, “Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization,” Appl. Biochem. Biotechnol., vol. 172, no. 5, pp. 2552–2561, 2014. [CrossRef] [Google Scholar]
  31. V. Achal, X. Pan, and D. Zhang, “Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.,” Chemosphere, vol. 89, no. 6, pp. 764–768, 2012. [CrossRef] [Google Scholar]
  32. F. Hammes, W. Verstraete*, and W. Verstraete, “Key roles of pH and calcium metabolism in microbial carbonate precipitation,” Re/Views Environ. Sci. Bio/Technology, vol. 1, no. Morita 1980, pp. 3–7, 2002. [CrossRef] [Google Scholar]
  33. R. A. Burne and Y. Y. M Chen, “Bacterial ureases in infectious diseases,” Microbes and Infection, vol. 2, no. 5. pp. 533–542, 2000. [CrossRef] [PubMed] [Google Scholar]
  34. S. Castanier, G. Le M, J. Perthuisot, and G. Le Metayer-Levrel, “Bacterial roles in the precipitation of carbonate minerals,” Microb. sediments, pp. 32–39, 2000. [CrossRef] [Google Scholar]
  35. S. S. B. F.D. Meyer, S. Bang, S. Min, L.D. Stetler, “Microbiologically-Induced Soil Stabilization: Application of,” Geo-Frontiers, pp. 4002–4011, 2011. [Google Scholar]
  36. V. Rebata-landa, J. C. Santamarina, and M. Asce, “Mechanical Effects of Biogenic Nitrogen Gas Bubbles in Soils,” no. February, pp. 128–137, 2012. [Google Scholar]
  37. J. He, J. Chu, and V. Ivanov, “Remediation of Liquefaction Potential of Sand Using the Biogas Method,” Geo-Congress 2013@ sStability Perform. …, pp. 879–887, 2013. [CrossRef] [Google Scholar]
  38. J. He, J. Chu, and V. Ivanov, “Mitigation of liquefaction of saturated sand using biogas,” vol. 63, no. 4, 2013. [Google Scholar]
  39. S. Saleh-Lakha et al., “Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii,” Appl. Environ. Microbiol., vol. 75, no. 12, pp. 3903–3911, 2009. [CrossRef] [Google Scholar]
  40. J. He, “Mitigation of liquefaction of sand using microbial methods,” pp. 879–887, 2013. [Google Scholar]
  41. K. Šimek, J. Nedomal, T. P. Jakob Pernthaler, and J. R. Dolan, “Altering the balance between bacterial production and protistan,” Antonie Van Leeuwenhoek, vol. 81, pp. 453–463, 2002. [CrossRef] [Google Scholar]
  42. L. A. van Paassen, R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht, “Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment,” J. Geotech. Geoenvironmental Eng., vol. 136, no. 12, pp. 1721–1728, 2010. [CrossRef] [Google Scholar]
  43. M. Blaszczyk, “Effect of Medium Composition on the Denitrification of Nitrate by Paracoccus denitrificans Effect of Medium Composition on the Denitrification of Nitrate by Paracoccus denitrificans,” vol. 59, no. 11, pp. 3951–3953, 1993. [Google Scholar]
  44. M. Simatupang and M. Okamura, “Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing,” Soils Found., vol. 57, no. 4, pp. 619–631, 2017. [CrossRef] [Google Scholar]
  45. E. Kavazanjian and S. T. O’Donnell, “Mitigation of Earthquake-Induced Liquefaction via Microbial Denitrification: A Two-Phase Process,” Ifcee 2015, pp. 2286–2295, 2015. [CrossRef] [Google Scholar]
  46. R. W. Boulanger and I. M. Idriss, “Liquefaction Susceptibility Criteria for Silts and Clays,” J. Geotech. Geoenvironmental Eng., vol. 132, no. 11, pp. 1413–1426, 2006. [CrossRef] [Google Scholar]
  47. H. Tsuchida, “Prediction of liquefaction of sandy deposits and countermeasures to liquefaction hazards,” in Proceedings of the Annual meeting of the Port and Harbour Research Institute (in Japanese), 1970, p. 3.1-3.33. [Google Scholar]
  48. Y. Huang and Z. Wen, “Recent developments of soil improvement methods for seismic liquefaction mitigation,” Nat. Hazards, vol. 76, no. 3, pp. 1927–1938, 2015. [CrossRef] [Google Scholar]
  49. S. O’Donnell, Mitigation of Earthquake-Induced Soil Liquefaction via Microbial Denitrification: A Two-Stage Process, no. March. ARIZONA STATE UNIVERSITY, 2016. [Google Scholar]
  50. Y. Tsukamoto, S. Kawabe, J. Matsumoto, and S. Hagiwara, “Cyclic resistance of two unsaturated silty sands against soil liquefaction,” Soils Found., vol. 54, no. 6, pp. 1094–1103, 2014. [CrossRef] [Google Scholar]
  51. J. Yang, S. Savidis, and M. Roemer, “Evaluating liquefaction strength of partially saturated sand,” J. Geotech. Eng. Div., vol. 130, no. 9, pp. 975–979, 2004. [CrossRef] [Google Scholar]
  52. M. Simatupang, Y. Kosaka, and M. Okamura, “Effects of Degree of Saturation on Liquefaction Resistance of Sand Improved with Enzymatic Calcite Precipitation,” no. Micce, 2015. [Google Scholar]
  53. M. K. Yegian, E. Eseller-Bayat, A. Alshawabkeh, and S. Ali, “Induced-partial saturation for liquefaction mitigation: experimental investigation,” J. Geotech. Geoenvironmental Eng., vol. 133, no. 4, pp. 372–380, 2007. [CrossRef] [Google Scholar]
  54. E. Eseller-bayat, M. K. Yegian, and A. Alshawabkeh, “Liquefaction Response of Partially Saturated Sands. I : Experimental Results,” J. Geotech. Geoenvironmental Eng., vol. 139, no. 6, pp. 863–871, 2013. [CrossRef] [Google Scholar]
  55. M. Okamura, M. Ishihara, and K. Tamura, “Degree of Saturation and Liquefaction Resistances of Sand Improved with Sand Compaction Pile,” J. Geotech. Geoenvironmental Eng., vol. 132, no. 2, pp. 258–264, 2006. [CrossRef] [Google Scholar]
  56. V. Rebata-Landa and J. C. Santamarina, “Mechanical Effects of Biogenic Nitrogen Gas Bubbles in Soils,” J. Geotech. Geoenvironmental Eng., vol. 138, no. 2, pp. 128–137, 2012. [CrossRef] [Google Scholar]
  57. Y. Li, “Mitigation of sand liquefaction using in situ production of biogas with biosealing,” 2014. [Google Scholar]
  58. K. Feng and B. M. Montoya, “Drained Shear Strength of MICP Sand at Varying Cementation Levels,” Ifcee, pp. 2242–2251, 2015. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.