Open Access
Issue
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
Article Number 01017
Number of page(s) 12
Section Geotechnical Engineering
DOI https://doi.org/10.1051/matecconf/201825001017
Published online 11 December 2018
  1. D. Kumari and W.-N. Xiang, “Review on biologically based grout material to prevent soil liquefaction for ground improvement,” Int. J. Geotech. Eng., 6362, pp. 1–6, (2017). [CrossRef] [Google Scholar]
  2. B. M. Montoya, J. T. DeJong, and R. W. Boulanger, “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation,” Géotechnique, 63, no. 4, p. 302 (2013). [CrossRef] [Google Scholar]
  3. R. H. Karol, H. Reuben, and others, “Chemical grouting and soil stabilization,” Revis. Expand., 3, pp. 1289–1315, 2003. [Google Scholar]
  4. J. T. Dejong, B. M. Mortensen, B. C. Martinez, and D. C. Nelson, “Bio-mediated soil improvement,” Ecol. Eng., 36, no. 2, pp. 197–210, Oct. 2010. [CrossRef] [Google Scholar]
  5. J. T. DeJong et al., “Upscaling of bio-mediated soil improvement,” Idaho National Laboratory (INL), Oct. 2009. [Google Scholar]
  6. C. Chen, G. Habert, Y. Bouzidi, and A. Jullien, “Environmental impact of cement production: detail of the different processes and cement plant variability evaluation,” J. Clean. Prod., 18, no. 5, pp. 478–485, (2010). [CrossRef] [Google Scholar]
  7. S. Islam and R. Hashim, “Behaviour of stabilised peat: A field study,” 5, no. 17, pp. 2366–2374, 2010. [Google Scholar]
  8. Z. Han, X. Cheng, and Q. Ma, “An experimental study on dynamic response for MICP strengthening liquefiable sands,” Earthq. Eng. Eng. Vib., 15, no. 4, pp. 673–679 (2016). [CrossRef] [Google Scholar]
  9. H. A. Keykha, A. Asadi, B. B. K. Huat, and S. Kawasaki, “Laboratory Conditions for Maximal Calcium Carbonate Precipitation Induced by Sporosarcina pasteurii and Sporosarcina aquimarina Bacteria,” Environ. Geotech., no. January, pp. 1–20 (2018). [CrossRef] [Google Scholar]
  10. J. T. DeJong, M. B. Fritzges, and K. Nüsslein, “Microbially induced cementation to control sand response to undrained shear,” J. Geotech. Geoenvironmental Eng.,132, no. 11, pp. 1381–1392 (2006). [CrossRef] [Google Scholar]
  11. N. W. Soon, L. M. Lee, T. C. Khun, and H. S. Ling, “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation,” J. Geotech. Geoenvironmental Eng., 140, no. 5, p. 4014006, (2014). [CrossRef] [Google Scholar]
  12. L. Cheng, M. A. Shahin, and R. Cord-Ruwisch, “Surface percolation for soil improvement by biocementation utilizing In Situ enriched Indigenous aerobic and anaerobic ureolytic soil microorganisms,” Geomicrobiol. J.,. 34, no. 6, pp. 546–556 (2017). [CrossRef] [Google Scholar]
  13. L. Cheng, R. Cord-ruwisch, and M. A. Shahin, “Cementation of sand soil by microbially induced calcite precipitation,” 90, no. January 2012, pp. 81–90 (2013). [Google Scholar]
  14. Y. Duraisamy and D. W. Airey, “Performance of biocemented Sydney sand using ex situ mixing technique Performance of biocemented Sydney sand using ex situ mixing technique,” J. Deep Found. Inst., 9, no. 1, pp. 48–56 (2016). [CrossRef] [Google Scholar]
  15. S. L. Kramer, “Geotechnical Earthquake Engineering Prentice Hall,” New York, (1996). [Google Scholar]
  16. N. Rogers, S. van Ballegooy, K. Williams, and L. Johnson, “Considering post-disaster damage to residential building construction-is our modern building construction resilient,” 2015. [Google Scholar]
  17. S. Rupam, “A Review on Soil Improvement Techniques to Mitigate Liquefaction,” North East Students Geo-Congress Adv. Geotech. Eng., no. March, pp. 1–6 (2014). [Google Scholar]
  18. R. P. Sharma, “Soil Improvement Techniques for Mitigation of Seismic Hazards An Overview,” in Recent Advances in Geotechnical Earthquake Engineering and soil Dyanamics, 2010, pp. 24–29. [Google Scholar]
  19. Z. Xu, et al. “Experimental Study of the Filling Effect of MICP Microbial Grouting in Silt,” 72, pp. 480–484 (2017). [Google Scholar]
  20. A. Zamani and B. M. Montoya, “Shearing and Hydraulic Behavior of MICP Treated Silty Sand,” in Geotechnical Frontiers, pp. 290–299 (2017) [Google Scholar]
  21. M. C. J. Zheng, R. Z. H. Lai, and J. Zhang, “Influence of cementation level on the strength behaviour of bio-cemented sand,” Acta Geotech., 12, no. 5, pp. 971–986, (2017). [CrossRef] [Google Scholar]
  22. Wang et al., “Review of Ground Improvement Using Microbial Induced Carbonate Precipitation (MICP),” Mar. Georesources Geotechnol., 35, no. 8, pp. 1135–1146, (2017). [Google Scholar]
  23. C. S. and B. M. Montoya, “Strengthening Coastal Sand Dunes using Microbial Induced Calcite Precipitation,” in Geo-Congress 2014 Technical Papers, GSP 234 , 2014, pp. 1683–1692 (2014). [Google Scholar]
  24. B. C. Martinez et al., “Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement,” J. Geotech. Geoenvironmental Eng., 139, no. 4, pp. 587–598, (2013). [CrossRef] [Google Scholar]
  25. N. K. Dhami, M. S. Reddy, and A. Mukherjee, “Biomineralization of calcium carbonates and their engineered applications: a review,” Front. Microbiol., 4, (2013). [CrossRef] [PubMed] [Google Scholar]
  26. S. Al-Thawadi and R. Cord-Ruwisch, “Calcium Carbonate Crystals Formation by Ureolytic Bacteria Isolated from Australian Soil and Sludge,” J. Adv. Sci. Eng. Res., 2, pp. 12–26 (2012). [Google Scholar]
  27. S. Castanier, G. Le Metayer-Levrel, and J.-P. Perthuisot, “Bacterial roles in the precipitation of carbonate minerals,” in Microbial sediments, Springer, Berlin, Heidelberg. pp. 32–39. (2000) [CrossRef] [Google Scholar]
  28. F. Hammes and W. Verstraete, “Key roles of pH and calcium metabolism in microbial carbonate precipitation,” Rev. Environ. Sci. Biotechnol., 1, no. 1, pp. 3–7 (2002). [CrossRef] [Google Scholar]
  29. A. Al Qabany, K. Soga, and C. Santamarina, “Factors affecting efficiency of microbially induced calcite precipitation,” J. Geotech. Geoenvironmental Eng., 138, no. 8, pp. 992–1001 (2012). [CrossRef] [Google Scholar]
  30. H. A. Keykha, A. Asadi, and M. Zareian, “Environmental Factors Affecting the Compressive Strength of Microbiologically Induced Calcite Precipitation-Treated Soil,” Geomicrobiol. J., pp. 1–6 (2017). [Google Scholar]
  31. N. W. Soon, L. M. Lee, T. C. Khun, and H. S. Ling, “Improvements in engineering properties of soils through microbial-induced calcite precipitation,” KSCE J. Civ. Eng., 17, no. 4, pp. 718–728, (2013). [CrossRef] [Google Scholar]
  32. M. Umar, K. A. Kassim, and K. T. P Chiet, “Biological process of soil improvement in civil engineering: A review,” J. Rock Mech. Geotech. Eng., 8, no. 5, pp. 767–774, (2016). [CrossRef] [Google Scholar]
  33. S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, “Microbiological precipitation of CaCO3,” Soil Biol. Biochem.,31, no. 11, pp. 1563–1571 (1999). [CrossRef] [Google Scholar]
  34. H. L. Mobley, M. D. Island, and R. P. Hausinger, “Molecular biology of microbial ureases.,” Microbiol. Rev., 59, no. 3, pp. 451–480 (1995). [Google Scholar]
  35. K. D. Arunachalam, K. S. S. Sathyanarayanan, B. S. S. Darshan, R. B. Raja, K. D. Arunachalam, and B. Raja, “Studies on the characterisation of Biosealant properties of Bacillus sphaericus,” Int. J. Eng. Sci. Technol., 2, no. 3, pp. 270–277 (2010). [Google Scholar]
  36. S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, “Microbiological precipitation of CaCO 3,” Soil Biol. Biochem., 31, no. 11, pp. 1563–1571, (1999). [CrossRef] [Google Scholar]
  37. Y. Fujita, G. D. Redden, J. C. Ingram, M. M. Cortez, F. G. Ferris, and R. W. Smith, “Strontium incorporation into calcite generated by bacterial ureolysis,” Geochim. Cosmochim. Acta, 68, no. 15, pp. 3261–3270 (2004). [CrossRef] [Google Scholar]
  38. V. S. Whiffin, L. A. van Paassen, and M. P. Harkes, “Microbial carbonate precipitation as a soil improvement technique,” Geomicrobiol. J., 24, no. 5, pp. 417–423 (2007). [CrossRef] [Google Scholar]
  39. V. Rebata-Landa, “No TitleMicrobial activity in sediments: effects on soil behavior.,” Phd Thesis, vol. Georgia In, (2007). [Google Scholar]
  40. L. Cheng, M. A. Shahin, M. Addis, T. Hartanto, and C. Elms, “Soil Stabilisation by Microbial-Induced Calcite Precipitation ( MICP ): Investigation into Some Physical and Environmental Aspects,” pp. 10–14, (2014). [Google Scholar]
  41. K. T. P. Chiet. Murtala Umar, Khairul Anuar Kassim, “Temperature Effects On The Strengh Properties Of Residual Soil,”. J. Teknol., 3, pp. 101–104, 2016. [Google Scholar]
  42. J. K. Mitchell and J. C. Santamarina, “Biological Considerations in Geotechnical Engineering,” J. Geotech. Geoenvironmental Eng., 131, no. 10, pp. 1222–1233, 2005. [CrossRef] [Google Scholar]
  43. G. D. O. Okwadha and J. Li, “Optimum conditions for microbial carbonate precipitation,” Chemosphere, 81, no. 9, pp. 1143–1148, (2010). [CrossRef] [Google Scholar]
  44. M. U. Qureshi, I. Chang, and K. Al-Sadarani, “Strength and durability characteristics of biopolymer-treated desert sand,” Geomech. Eng, 12 (5), 785-801 (2017). [CrossRef] [Google Scholar]
  45. P. Anbu, C.-H. H. Kang, Y.-J. J. Shin, and J.-S. S. So, “Formations of calcium carbonate minerals by bacteria and its multiple applications,” Springerplus, 5, no. 1, p. 250, (2016). [CrossRef] [Google Scholar]
  46. J. Xu, Y. Du, Z. Jiang, and A. She, “Effects of calcium source on biochemical properties of microbial CaCo3 precipitation,” Front. Microbiol., 6, 1-7 (2015). [Google Scholar]
  47. C.-W. Chou, E. A. Seagren, A. H. Aydilek, and M. Lai, “Biocalcification of Sand through Ureolysis,” J. Geotech. Geoenvironmental Eng., 37, 12, pp. 1179–1189 (2011). [CrossRef] [Google Scholar]
  48. M. Umar, K. A. Kassim, and Z. Ibrahim, “Microbially induced cementation to improve the strength of residual soil,” In Engineering Challenges for Sustainable Future: Proceedings of the 3rd International Conference on Civil, Offshore and Environmental Engineering (ICCOEE 2016, Malaysia, 15-17 Aug 2016) (p. 331). CRC Press, p. 331. (2016) [Google Scholar]
  49. L. M. Lee, “Bio-Mediated Soil Improvement under Various Concentrations of Cementation Reagent,” Appl. Mech. Mater., 204, pp. 326–329, (2012). [CrossRef] [Google Scholar]
  50. M. Umar, K. A. Kassim, and K. T. P Chiet, “Biological process of soil improvement in civil engineering: A review” J. of Rock Mechanics and Geo. Eng,” 8, 767-774 (2016). [CrossRef] [Google Scholar]
  51. K. T. P. Chiet, K. A. Kassim, K. B. Chen, U. Martula, C. S. Yah, and A. Arefnia, “Effect of Reagents Concentration on Biocementation of Tropical Residual Soil,” in IOP Conference Series: Materials Science and Engineering, 136, (2016). [Google Scholar]
  52. A. Al Qabany et al., “Factors affecting efficiency of microbially induced calcite precipitation,” J. Geotech. Geoenvironmental Eng., 138, no. 8, pp. 992–1001 (2012). [CrossRef] [Google Scholar]
  53. T. M. E. Peng Xiaoa, b, Hanlong Liua, b, Yang Xiaoa, b,*, Armin W. Stuedleinc, “Liquefaction resistance of bio-cemented calcareous sand,” Soil Dyn. Earthq. Eng., 107, pp. 9–19 (2018) [CrossRef] [Google Scholar]
  54. M. Simatupang and M. Okamura, “Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing,” Soils Found., 57, no. 4, pp. 619–631, (2017). [CrossRef] [Google Scholar]
  55. T. Sasaki and R. Kuwano, “Undrained cyclic triaxial testing on sand with non-plastic fi nes content cemented with microbially induced CaCO 3,” Soils Found., 56, no. 3, pp. 485–495, (2016). [CrossRef] [Google Scholar]
  56. H. Zhiguang, C. Xiaohui, and M. Qiang, “An experimental study on dynamic response for MICP strengthening lique fi able sands Abstract:,” 15, no. 4, pp. 673–679 (2016). [Google Scholar]
  57. M. B. Burbank et al., “Urease Activity of Ureolytic Bacteria Isolated from Six Soils in which Calcite was Precipitated by Indigenous Bacteria Urease Activity of Ureolytic Bacteria Isolated from Six Soils in which Calcite was Precipitated by Indigenous Bacteria,” 451, no. October 2016, 2012. [Google Scholar]
  58. K. Feng and B. M. Montoya, “Quantifying Level of Microbial-Induced Cementation for Cyclically Loaded Sand,” J. Geotech. Geoenvironmental Eng., 143, no. 6, p. 6017005 (2017). [CrossRef] [Google Scholar]
  59. B. M. Montoya, “Bio-mediated soil improvement and the effect of cementation on the behavior, improvement, and performance of sand,” J. Appl. Microbiol., Oct. 2012. [Google Scholar]
  60. K. Feng and B. M. Montoya, “Quantifying Level of Microbial-Induced Cementation for Cyclically Loaded Sand,” J. Geotech. Geoenviron. Eng.,143, no. 6, pp. 1–4, (2017). [Google Scholar]
  61. K. Feng and B. M. Montoya, “Drained Shear Strength of MICP Sand at Varying Cementation Levels,” Ifcee, pp. 2242–2251 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.