Open Access
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01025
Number of page(s) 6
Section Main Session: Water System Operations
Published online 07 December 2018
  1. Becker A, Serban P. Hydrological models for waterresources system design and operation[J]. Operational Hydrology Report, 1990: 23-35. [Google Scholar]
  2. Montanari A, Brath A. A stochastic approach for assessing the uncertainty of rainfall‐runoff simulations[J]. Water Resources Research, 2004, 40(1):75-88. [CrossRef] [Google Scholar]
  3. Yao H, Georgakakos A. Assessment of Folsom Lake response to historical and potential future climate scenarios: 2. Reservoir management[J]. Journal of Hydrology, 2001, 249(1):148-175. [CrossRef] [Google Scholar]
  4. Georgakakos AP. The value of stream forecasting in reservoir operation 1[J]. Jawra Journal of the American Water Resources Association, 2010, 25(4): 789-800. [CrossRef] [Google Scholar]
  5. Sivapragasam C, Vasudevan G, Vincent P. Effect of inflow forecast accuracy and operating time horizon in optimizing irrigation releases[J]. Water Resources Management, 2007, 21(6):933-945. [CrossRef] [Google Scholar]
  6. Pianosi F, Ravazzani G. Assessing rainfall–runoff models for the management of Lake Verbano[J]. Hydrological Processes, 2010, 24(22):3195-3205. [CrossRef] [Google Scholar]
  7. Komatsu E, Fukushima T, Harasawa H. A modeling approach to forecast the effect of long-term climate change on lake water quality[J]. Ecological Modelling, 2007, 209(2):351-366. [CrossRef] [Google Scholar]
  8. Renjun Z, Yilin Z, Lerun F, et al. The Xinanjiang model[J]. Proc of the Oxford Symposium on Hydrological Forecasting Iahs Publ, 1980, 135(1):371–381. [Google Scholar]
  9. Abebe N A, Ogden F L, Pradhan N R. Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: implications for parameter estimation.[J]. Journal of Hydrology, 2010, 389(3):301-310. [CrossRef] [Google Scholar]
  10. Ferretti R, Paolucci T, Bernardini L, et al. The role of the high resolution weather forecast in estimating the run-offusing a simple hydrological model[J]. Annals of Geophysics, 2003, 46(2):321-329. [Google Scholar]
  11. Chiew F, Vaze J, Viney N, et al. Modelling Runoff and Climate Change Impact on Runoff in 178 Catchments in the Murray-Darling Basin Using Sacramento and SIMHYD Rainfall-runoff Models[J]. Proceedings of Water Down Under, 2008: 2314-2332. [Google Scholar]
  12. Wan Y, Konyha K. A simple hydrologic model for rapid prediction of runoff from ungauged coastal catchments[J]. Journal of Hydrology, 2015, 528(528):571-583. [CrossRef] [Google Scholar]
  13. Finnerty B D, Smith M B, Seo D J, et al. Space-Time Scale Sensitivity of the Sacramento Model to Radar-Gage Precipitation Inputs[J]. Journal of Hydrology, 2015, 203(1):21-38. [CrossRef] [Google Scholar]
  14. Chen R S, Pi L C. Diffusive tank model application in rainfall-runoff analysis of upland fields in Taiwan[J]. Agricultural Water Management, 2004, 70(1):39-50. [CrossRef] [Google Scholar]
  15. Tsihrintzis V A, Hamid R. Runoff quality prediction from small urban catchments using SWMM[J]. Hydrological Processes, 2015, 12(2):311-329. [CrossRef] [Google Scholar]
  16. Wang Z G, Liu C M, Xian-Feng W U. A review of the studies on distributed hydrological model based on DEM[J]. Journal of Natural Resources, 2003, 18(2):168-173. [Google Scholar]
  17. Chen J, Wu Y. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features[J]. Journal of Hydrology, 2012, 420(7):319-328. [CrossRef] [Google Scholar]
  18. Peters J C, Ely P B. FLOOD-RUNOFF FORECASTING WITH HEC1F1 [J]. Jawra Journal of the American Water Resources Association, 2010, 21(1):7-14. [CrossRef] [Google Scholar]
  19. Porrettabrandyk L, Chorman´Ski J, Ignar S, et al. Evaluation and verification of the WetSpa model based on selected rural catchments in Poland.[J]. Journal of Water & Land Development, 2010, 14((Dec):115-133. [CrossRef] [Google Scholar]
  20. Lei X H, Liao W H, Jiang Y Z, et al. Distributed hydrological model EasyDHM I:Theory[J]. Journal of Hydraulic Engineering, 2010, 41(7):786-794. [Google Scholar]
  21. Lei X, Liao W, Wang Y, et al. Development and Application of a Distributed Hydrological Model: EasyDHM[J]. Journal of Hydrologic Engineering, 2014, 19(1):44-59. [CrossRef] [Google Scholar]
  22. Yao C, Li Z J, Bao H J, et al. Application of a Developed Grid-Xinanjiang Model to Chinese Watersheds for Flood Forecasting Purpose[J]. Journal of Hydrologic Engineering, 2009, 14(9):923-934. [CrossRef] [Google Scholar]
  23. Gill M A. Flood routing by the Muskingum method[J]. Journal of Hydrology, 1978, 36(3):353-363. [CrossRef] [Google Scholar]
  24. Karahan H, Gurarslan G, Zong W G. Parameter Estimation of the Nonlinear Muskingum Flood Routing Model Using a Hybrid Harmony Search Algorithm[J]. Journal of Hydrologic Engineering, 2013, 18(3):352-360. [CrossRef] [Google Scholar]
  25. Jung Y W, Oh D S, Kim M, et al. Calibration of LEACHN model using LH-OAT sensitivity analysis[J]. Nutrient Cycling in Agroecosystems, 2010, 87(2):261-275. [CrossRef] [Google Scholar]
  26. Duan Q, Sorooshian S, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994, 158(3-4):265-284. [CrossRef] [Google Scholar]
  27. Francés F, Vélez J I, Vélez J J. Split-parameter structure for the automatic calibration of distributed hydrological models[J]. Journal of Hydrology, 2012, 332(1):226-240. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.