Issue |
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
|
|
---|---|---|
Article Number | 01108 | |
Number of page(s) | 8 | |
Section | Main Session: Water System Operations | |
DOI | https://doi.org/10.1051/matecconf/201824601108 | |
Published online | 07 December 2018 |
Ensemble flood forecasting based on ensemble NWP and the GMKHM distributed hydrological model
National Meteorological Center, China Meteorological Administration, Beijing, 100081, P. R. China
* Correspondence to: Hongjun Bao (baohongjun@cma.gov.cn)
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for flood forecast. The GMKHM distributed hydrological model, which is based on a mixed runoff generation model and overland flow routing model based on kinematic wave theory, and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the GMKHM model and the TIGGE database gives a promising tool for the anticipation of flood events several days ahead,, comparable with that driven by raingauge observation.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.