Open Access
Issue
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Article Number 03009
Number of page(s) 6
Section Communications
DOI https://doi.org/10.1051/matecconf/201712503009
Published online 04 October 2017
  1. CISCO White Paper, Cisco visual networking index: Global mobile data traffic forecast update, 2016-2021, (2017) [Google Scholar]
  2. A.J. Staring, Applying the Cloud Computing Model in LTE based Cellular Systems, (2012) [Google Scholar]
  3. M. Richart, et al., Resource Slicing in Virtual Wireless Networks: A Survey, IEEE Trans. on Network and Service Management, 13, 15 (2016) [CrossRef] [Google Scholar]
  4. N. Bizanis, F.A. Kuipers, SDN and Virtualization Solutions for the Internet of Things: A Survey, IEEE Access, 4, 16 (2016) [CrossRef] [Google Scholar]
  5. E. Hossain, M. Hasan, 5G Cellular: Key enabling technologies and research challenges, IEEE Instrumentation & Measurement Mag, 18, 11 (2015) [CrossRef] [Google Scholar]
  6. S. Sun, et al., Integrating network function virtualization with SDR and SDN for 4G/5G networks, IEEE Network, 29, 6 (2015) [Google Scholar]
  7. Y. Li, M. Chen, Software-Defined Network Function Virtualization: A Survey, IEEE Access, 3, 12 (2015) [EDP Sciences] [Google Scholar]
  8. P. Rost, et al., Benefits and Challenges of Virtualization in 5G Radio Access Networks, IEEE Communications Mag., 53, 8 (2015) [CrossRef] [Google Scholar]
  9. J. Cadir, et al., “Resource Pooling for Wireless Networks: Solutions for the Developing World”, ACM SIGCOMM Computer Communication Review, 46, 6 (2016) [Google Scholar]
  10. P. Rost, et al., “Benefits and Challenges of Virtualization in 5G Radio Access Networks,“ IEEE Comms Magazine, 53, 8 (2015) [CrossRef] [Google Scholar]
  11. M. Richart, et al., Resource Slicing in Virtual Wireless Networks: A Survey, IEEE Trans. on Network and Service Management, 13, 15 (2016) [CrossRef] [Google Scholar]
  12. S.S. Hong, et al., Picasso: Flexible RF and Spectrum Slicing, Proc. of the ACM SIGCOMM, 12 (2012) [Google Scholar]
  13. Y. Zaki, et al., LTE Wireless Virtualization and Spectrum Management, WMNC, (2011) [Google Scholar]
  14. C. Liang, F.R. Yu, Wireless Virtualization for next generation mobile cellular networks, IEEE Wireless Comms, 22, 9 (2015) [EDP Sciences] [Google Scholar]
  15. R. Kokku, et al., NVS: A Substrate for Virtualizing Wireless Resources in Cellular Networks, IEEE/ACM Trans. on Networking, 20, 14 (2012) [CrossRef] [Google Scholar]
  16. X. Wang, et al., A Collaborative Spectrum-Sharing Framework for LTE Virtualization, IEEE Conf. on CIC, (2015) [Google Scholar]
  17. Y. Zaki, et al., LTE mobile network virtualization: Exploiting multiplexing and multi-user diversity gain, Jour. Mobile Networks and Applications, 16, 9 (2011) [Google Scholar]
  18. J. Cadir, et al., Resource Pooling for Wireless Networks: Solutions for the Developing World, ACM SIGCOMM Comp. Comm. Rev., 46, 6 (2016) [Google Scholar]
  19. A. Abdelhamid, et al., Resource Allocation for Heterogeneous Traffic in LTE Virtual Networks, IEEE Int. Conf. on MDM, (2015) [Google Scholar]
  20. Y. Wang, K.I. Pedersen, Performance Analysis of Enhanced Inter-cell Interference Coordination in LTE-Advanced Heterogeneous Networks, IEEE 75th VTC Spring, (2012) [Google Scholar]
  21. X. Wang, et al., On Radio Resource Sharing in Multi-Antenna Virtualized Wireless Networks, Proc. of ACM Int. Workshop on MSWiM 2013, 10 (2013) [Google Scholar]
  22. T. Koponen, et al., Network virtualization in multi-tenant datacenters, in Proc. 11th USENIX Symp. Netw. Syst. Design Implement., 14 (2014) [Google Scholar]
  23. S. Racherla, et al., Implementing IBM Software Defined Network for Virtual Environments, Durham, NC, USA: IBM RedBooks, (2014) [Google Scholar]
  24. R. Sherwood, et al., Can the production network be the testbed?, in Proc. 9th USENIX Conf. Oper. Syst. Design Implement., 6 (2010) [Google Scholar]
  25. A. Al-Shabibi, et al., OpenVirteX: A Network Hypervisor, (2014) [Google Scholar]
  26. Bozakov, P. Papadimitriou, AutoSlice: Automated and scalable slicing for software-defined networks, in Proc. ACM Conf. CoNEXT Student Workshop, 2 (2012) [Google Scholar]
  27. H. Yamanaka, et al., AutoVFlow: Autonomous virtualization for wide-area OpenFlow networks, in Proc. 3rd Eur. Workshop Softw. Defined Netw., (2014) [Google Scholar]
  28. D.A. Drutskoy, Software-defined network virtualization with FlowN, Ph.D. dissertation, Dept. Comput. Sci., Princeton Univ., Princeton, NJ, USA, (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.