Issue |
MATEC Web of Conf.
Volume 399, 2024
2024 3rd International Conference on Advanced Electronics, Electrical and Green Energy (AEEGE 2024)
|
|
---|---|---|
Article Number | 00005 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/matecconf/202439900005 | |
Published online | 24 June 2024 |
Future Green Mobile Communication Technology Facing the “Double Carbon” Goal
Dongguan City University, Dongguan, Guangdong 523419, China
The goal of “double carbon” (namely “peak carbon dioxide emissions” and “carbon neutrality”) proposed by China for the first time is an important layout in the Tenth Five-Year Plan, and it is also the key goal to realize the green and sustainable development of mobile communication networks in the future, and it is also the foundation for China’s international carbon asset pricing right and the world carbon trading platform. Among them, the difficulty in realizing green communication lies in maintaining the growth of business volume. Reduce network energy consumption and carbon emissions. This paper studies the green communication technology from the perspective of energy saving and emission reduction on the mobile communication network side and the perspective of the integrated architecture of communication network and multi-energy energy network. The research results show that the key to realize green communication technology lies in the mutual matching of network resources, energy resources and business distribution, while the existing technology can only achieve one-way matching of network resources and business distribution. Or the one-way matching of energy resources and service distribution. Based on this, this paper proposes a native green grid architecture with communication, perception and energy fusion, which has the ability of energy perception and service perception, supports the two-way matching method of network resources, energy resources and service distribution, and realizes the continuous growth of service while significantly reducing the energy consumption and carbon emissions on the mobile communication network side by eliminating the randomness and suddenness of service distribution and energy distribution.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.