Issue |
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 6 | |
Section | Communications | |
DOI | https://doi.org/10.1051/matecconf/201712503010 | |
Published online | 04 October 2017 |
Load balancing in 5G Networks
1 OTE Academy S.A., Maroussi-Athens, Greece
2 Voice Research Lab, OTE S.A., Maroussi-Athens, Greece
3 Wireless Research Lab, OTE S.A., Maroussi-Athens, Greece
The expected huge increase of mobile devices and user data demand by 2020 will stress the current mobile network in an unprecedented way. The future mobile networks must meet several strong requirements regarding the data rate, latency, quality of service and experience, mobility, spectrum and energy efficiency. Therefore, efforts for more efficient mobile network solutions have been recently initiated. To this direction, load balancing has attracted much attention as a promising solution for higher resource utilization, improved system performance and decreased operational cost. It is an effective method for balancing the traffic and alleviating the congestion among heterogeneous networks in the upcoming 5G networks. In this paper, we focus on an offloading scenario for load balancing among LTE and Wi-Fi networks. Additionally, network graphs methodology and its abstracted parameters are investigated in order to better manage wireless resource allocation among multiple connections. The COHERENT architectural framework, which consists of two main control components, makes use of such abstracted network graphs for controlling or managing various tasks such as traffic steering, load balancing, spectrum sharing and RAN sharing. As a result, the COHERENT project eventually develops a unified programmable control framework used to efficiently coordinate the underlying heterogeneous mobile networks as a whole.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.