Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06075
Number of page(s) 9
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. A. Sobczyk-Guzenda, H Szymanowski, W. Jakubowski, A. Błasińska, J. Kowalski, M. Gazicki-Lipman “Morphology, photocleaning and water wetting properties of cotton fabrics, modified with titanium dioxide coatings synthesized with plasma enhanced chemical vapor deposition technique”, Surf. & Coat. Tech. 217 (2013) 51–57. [CrossRef] [Google Scholar]
  2. J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Y. Tok, H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion”, Sci. Rep. 2 (2012) 451. [Google Scholar]
  3. G. Liu, L. Ch Yin, J. Wang, P. Niu, Ch. Zhen, Y. Xie, H.M. Cheng “A red anatase TiO2 photocatalyst for solar energy conversion”, Energy Environ. Sci. 5 (2012) 9603. [CrossRef] [Google Scholar]
  4. J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, “Enhanced photocatalytic CO2 reduction activity of anatase TiO2 by coexposed {001} and {101} facets” J. Am. Chem. Soc. 136–25 (2014) 8839–8842. [CrossRef] [Google Scholar]
  5. R. Rahimi, S. S. Moghaddam, M. Rabbani, “Comparison of photocatalysis degradation of 4-nitrophenol using N,S co-doped TiO2 nanoparticles synthesized by two different routes” J Sol-Gel Sci Technol 64 (2012) 17–26. [CrossRef] [Google Scholar]
  6. X Cheng, X Yu, Z Xing, J Wan, “Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particle under simulated sunlight irradiation”, Energy Procedia 6 (2012) 598–605. [CrossRef] [Google Scholar]
  7. N R Khalid, E Ahmed, Z Hong, Y Zhang, M Ahmad, “Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photocatalysis applications”, Curr. Appl. Phys. 12 (2012) 1485–1492. [CrossRef] [Google Scholar]
  8. K. Yamada, H. Yamane, S. Matsushima, H. Nakamura, T. Sonoda, S. Miura, K. Kumada “Photocatalytic activity of TiO2 thin films doped with nitrogen using a cathodic magnetron plasma treatment” Thin Solid Films 516 (2008) 7560–7564. [CrossRef] [Google Scholar]
  9. J Jin, S-Z Huang, J Liu, Y Li, L-H Chen, Y Yu, H-E Wang, C P Grey, and B-L Su, “Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high-rate and high-capacity lithium batteries”, Adv. Sci. (2015) DOI: 10.1002/advs.201500070. [Google Scholar]
  10. H Do, T- Ch Yen, and L Chang, “Stability and etching of titanium oxynitride films in hydrogen microwave plasma”, Vac. Sci. Technol. A 31-4 (2013) 41304-1-7. [Google Scholar]
  11. J. Senthilnathan and L Philip, “Investigation on degradation of methyl parathion using visible light in the presence of Cr+3 and N-doped TiO2”, Adv. Mat. Res. Vols. 93-94 (2010) 280–283. [CrossRef] [Google Scholar]
  12. J Zhang, B Gao, Q Gan, J Xia, Y Cao, Y Ma, J Wang, K Huo, “Fabrication and capacitive properties of C-doped TiO2 nanotube array” Chem. Rapid Commun. Vol 2-2 (2014) 29–32. [Google Scholar]
  13. G Zheng, J Wang, X Liu, A Yang, H Song, Y Guo, H Wei, Ch Jiao, S Yang, Q Zhu, Z Wang, “MgO/TiO2 (rutile) heterojunction measured by X-ray photoelectron spectroscopy”, Appl. Surf. Sci. 256 (2010) 7327–7330. [CrossRef] [Google Scholar]
  14. T Hu, Ch Chu, Y Xin, S Wu, K W KYeung, P K. Chu, “Corrosion products and mechanism on NiTi shape memory alloy in physiological environment” Mater. Res., 25–2 (2010) 350–358. [CrossRef] [Google Scholar]
  15. M Tallarida, Daniel Friedrich, Matthias Städter, Marcel Michling, and Dieter Schmeisser, “Growth of TiO2 with thermal and plasma enhanced atomic layer deposition”, J. of Nanoscience and Nanotechnology, 11 (2011) 1–5. [CrossRef] [Google Scholar]
  16. W Zhang, T Hu, B Yang, P Sun, H He, “The effect of boron content on properties of B-TiO2 photocatalyst prepared by Sol-gel method”, J. Adv. Oxid. Technol. 16–2 (2013) 261–267. [Google Scholar]
  17. V-D Dao, L L Larina, and H-S Choi, “Plasma reduction of nanostructured TiO2 electrode to improve photovoltaic efficiency of dye-sensitized solar cells”, J. of the Electrochem. Soc., 161-14 (2014) H896–H902. [CrossRef] [Google Scholar]
  18. X. Xia, Z. Zeng, X. Li, Y. Zhang, J. Tu, Ch. Fan, H. Zhang, H. J.Fan, “Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage” Nanoescale 5 (2013) 6040–6047. [CrossRef] [Google Scholar]
  19. G Liu, F Li, D-W, D-M Tang, Ch Liu, X Ma, G Q Lu and H-M Cheng, “Electron field emission of a nitrogen-doped TiO2 nanotube array”, Nanotechnol. 19 (2008) 025606. [CrossRef] [Google Scholar]
  20. Z Xiaoyan, S Peng, C Xiaoli, “Nitrogen-doped TiO2 photocatalysts synthesized from titanium nitride: characterizations and photocatalytic hydrogen evolution performance”, J. of Adv. Oxid. Technol., 16–1 (2013) 131–136. [Google Scholar]
  21. Ch Chen, H Bai, S-M Chang, Ch Chang and W Den, “Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources”, J. of Nanoparticle Res. (2007) 9:365–375. [CrossRef] [Google Scholar]
  22. Y-Ch Lin, Ch-Y Lin, and P-W Chiu, “Controllable graphene N-doping with ammonia plasma”, Appl. Phys. Lett. 96 (2010) 133110. [CrossRef] [Google Scholar]
  23. X-J Zou, K N Ding, Y F Zhang, and J Q Li, “A DFT study of acetonitrile adsorption and decomposition on the TiO2 (110) surface”, Int. J. of Quantum Chem., 111–5 (2011) 915–922. [CrossRef] [Google Scholar]
  24. L. Yang, Z. Jiang, S. Lai, Ch. Jiang, and H. Zhong, “Synthesis of titanium containing SBA-15 and its application for photocatalytic degradation of phenol”, Int. Journal of Chem. Eng., 2014 (2014) 691562 [Google Scholar]
  25. W-J Ong, L-L Tan, S-P Chai, S-T Yong, and A R Mohamed, “Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on the graphene scaffold as photoactive hybrid nanostructures for reduction of carbon dioxide to methane”, Nano-Res. 7–10 (2014) 1528–1547. [CrossRef] [Google Scholar]
  26. D. Regonini, A. Jaroenworaluck, R. Stevensa and C.R. Bowen, “Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition”, Surf. Interface Anal. 42, (2010) 139–144 [CrossRef] [Google Scholar]
  27. J Sun, H Zhang, L-H Guo, and L Zhao, “Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity”, Appl. Mater. Interfaces 5 (2013) 13035–13041 [CrossRef] [Google Scholar]
  28. G. Liu, Ch. Han, M. Pelaez, D. Zhu, S Liao, V. Likodimos, N. Ioannidis, A. G. Kontos, P. Falaras, P. S. M. Dunlop, J. A. Byrne and D. D. Dionysiou, “Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles”, Nanotechnology 23 (2012) 294003. [CrossRef] [Google Scholar]
  29. E. Finazzi, C. Di Valentin, A. Selloni, G. Pacchioni, “First principles study of nitrogen doping at the anatase TiO2 (101) surface”, J. Phys. Chem. C, 111–26 (2007) 9275–9282. [CrossRef] [Google Scholar]
  30. F. Peng, L. Cai, H. Yu, H. Wang, J. Yang, “Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity” J. of Solid State Chem. 181 (2008) 130–136 [CrossRef] [Google Scholar]
  31. Q Xiang, J Yu, M. Jaroniec, “Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles”, J. Am. Chem. Soc. 134 (2012) 6575–6578. [Google Scholar]
  32. G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst, J. Mater. Chem., 20 (2010) 5301–530. [CrossRef] [Google Scholar]
  33. N. M. Thuy, D. Q. Van, L. T. Hong-Hai, The visible light activity of the TiO2 and TiO2:V4+ photocatalyst, Nanomater nanotechnol., 2 (2012) 14:2012. [Google Scholar]
  34. F Tian, Y Zhang, J Zhang, and Ch Pan, “Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets”, J. Phys. Chem. C 116 (2012) 7515−7519 [CrossRef] [Google Scholar]
  35. JR Huang, X Tan, T Yu, L Zhao, WL Hu, Enhanced photoelectrocatalytic and photoelectrochemical properties by high-reactive TiO2/SrTiO3 hetero-structured nanotubes with dominant {001} facet of anatase TiO2, Electroch. Acta 146 (2014) 278–287. [CrossRef] [Google Scholar]
  36. S Hoang, S Guo, N T. Hahn, A J. Bard, and C. B Mullins, “Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires”, Nano Lett. 12 (2012) 26–32. [CrossRef] [Google Scholar]
  37. L Han, Y Xin, H Liu, X Ma, G Tang, “Photoelectrocatalytic properties of nitrogen doped TiO2/Ti photoelectrode prepared by plasma based ion implantation under visible light”, J. of Hazard. Mat. 175 (2010) 524–531. [CrossRef] [Google Scholar]
  38. S Kimiagar, and M R Mohammadizadeh, “N-doped TiO2 nanothin films: photocatalytic and hydrophilicity properties”, Eur. Phys. J. Appl. Phys. 61 (2013) 10303. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.