Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06074
Number of page(s) 6
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. J. H. Bang; K.S. Suslick. Applications of Ultrasound to the Synthesis of Nanostructured Materials[J]. Adv. Mater., 2010, 22:1039–1059 [CrossRef] [PubMed] [Google Scholar]
  2. P. Sivakumar, P. Kumar Nayak, B. Markovsky, D. Aurbach, A. Gedanken. Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for Li-ion batteries[J]. Ultrason. Sonochem., 2015, 26: 332–339 [CrossRef] [Google Scholar]
  3. Y. R. Lee, S.M. Cho, W.S. Ahn, C.H. Lee, K.H. Lee, W.S. Cho. Facile synthesis of an IRMOF-3 membrane on porous Al2O3 substrate via a sonochemical route[J]. Micropor. Mesopor. Mat., 2015, 213: 161–168 [CrossRef] [Google Scholar]
  4. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite[J]. J. Ind. Eng. Chem., 2014, 20(6):3970–3974 [CrossRef] [Google Scholar]
  5. P. A.L. Lopes, M.B. Santos, A. J. S. Mascarenhas, L.A. Silva. Synthesis of CdS nano-spheres by a simple and fast sonochemical method at room temperature[J]. Mater. Lett., 2014, 136: 111–113 [CrossRef] [Google Scholar]
  6. Sambandam, J. J. Wu. Sonochemical synthesis of carbon supported Sn nanoparticles and its electrochemical application[J]. Ultrason. Sonochem., 2014, 21(6):1954–1957 [CrossRef] [Google Scholar]
  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari. Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route[J]. J. Ind. Eng. Chem., 20(5), 2014: 3313–3319 [CrossRef] [Google Scholar]
  8. D.C. Nguyen, Q. K. Dinh, T. T. Hoa, D. Quang, P. H. Viet, T. D. Lam, N. D. Hoa, N. V. Hieu. Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor[J]. Mater. Res. Bull., 2015, 68:302–307 [CrossRef] [Google Scholar]
  9. X. Zhou, Y.M. Dong, N. Xu, S.Q. Liu, F. Chen. Template-free formation of spindle-like α-Fe2O3 microstructures by hydrothermal reduction[J]. Mater. Lett., 2015, 158: 285–289 [CrossRef] [Google Scholar]
  10. W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang. Hydrothermal synthesis of monodisperse porous cube, cake and spheroid-like α-Fe2O3 particles and their high gas-sensing properties[J]. Sensor Actuat B-Chem, 2015, 220: 243–254 [CrossRef] [Google Scholar]
  11. Y. Wang, Y.K. Sun, W.G. Li, W.D. Tian, A. Irini. High performance of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral condition with a low stoichiometry of H2O2: Kinetic study and mechanism[J]. Chem. Eng. J., 2015, 267: 1–8 [CrossRef] [Google Scholar]
  12. S. Shivakumara, Tirupathi Rao Penki N. Munichandraiah. High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors[J]. Mater. Lett., 2014, 131:100–103 [CrossRef] [Google Scholar]
  13. K. Andreas, C. Ilkay, G. Michael. New benchmark for water photooxidation by nanostructured α-Fe2O3 films[J]. J. Am. Chem. Soc., 2006, 128(49): 15714–15721 [CrossRef] [PubMed] [Google Scholar]
  14. S.H. Sun, H. Zeng. Size-controlled synthesis of magnetite nanoparticles[J]. J. Am. Chem. Soc., 2002, 124(28):8204–5 [CrossRef] [Google Scholar]
  15. J.M. Ma, J.B. Lian, X.C. Duan, X.D. Liu, W.J. Zheng. α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties[J]. J. Phys. Chem. C 2010, 114, 10671–10676. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.