Open Access
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
Article Number 05012
Number of page(s) 5
Section Modern Communication Technology and Applications
Published online 26 April 2016
  1. R. H. Walden. “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communications, vol. 17(4), pp. 539–550, Apr 1999. [CrossRef] [Google Scholar]
  2. S. Kirolos, J. Laska, M. Wakin etc. “Analog-to-Information Conversion via Random Demodulation[C],” Processing of the IEEE Dallas Circuits and Systems Workshop (DCAS). Dallas, Texas, 2006. [Google Scholar]
  3. J. Laska, S. Kirolos, Massoud etc. Random Sampling for Analog-to-Information Conversion of Wideband Signals[C]. Proceedings of the IEEE Dallas Circuits and Systems Workshop (DCAS’06). Dallas, Texas, 2006. [Google Scholar]
  4. Y. Cand`es, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. on Information Theory, vol. 52, pp. 489–509, Feb 2006. [CrossRef] [Google Scholar]
  5. G. Fudge, R. Bland, M. Chivers, S. Ravindran, J. Haupt, and P. Pace, “A Nyquist folding analog-to information receiver,” in Proc. 42nd Asilomar Conf. on Signals, Compute, Syst. (ACSSC), 2008, pp.541–545E. [Google Scholar]
  6. J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 4036–4048, Sept.2006. [CrossRef] [Google Scholar]
  7. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2479–2493, Jul 2009. [Google Scholar]
  8. R. Maleh, G. L. Fudge, F. A. Boyle, P. E. Pace, et al. “Analog-to-Information and the Nyquist Folding Receiver,” IEEE Journal on Emerging and Selected in Circuits and Systems, 2012,2(3). pp. 564–578. [CrossRef] [Google Scholar]
  9. S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, Dec 1993. [Google Scholar]
  10. Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with application to wavelet decomposition,” in Proc. 27th ACSSC, 1994, vol. 1, pp.40–44. [Google Scholar]
  11. E. J Candes. and T Tao., “Decoding by linear programming [J],” IEEE Transactions on Information Theory, vol. 51, pp. 4203–4215, Dec 2005. [Google Scholar]
  12. D. L. Donoho, Tsaig Y,Drori I, et al “Sparse solution of underdetermined linear equations by stage wise orthogonal matching pursuit [J],” IEEE Transaction on Information Theory, vol. 58, pp. 1094–1121, Feb 2012. [Google Scholar]
  13. D. Needell and R. Vershynin. “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit”, Foundations of Computational Mathematies, vol. 9, pp. 317–334, Mar 2009. [CrossRef] [Google Scholar]
  14. D. Needell, J. A. Tropp. “CosaMP: Iiterative Signal Recovery from Incomplete and Inaccurate Samples[J],” Applied and Computational Harmonic Analysis, vol. 26, pp. 301–320, Mar 2008. [Google Scholar]
  15. Dai. W, Milenkovic. O, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Information Theory, vol.55, pp. 2230–2249, May 2009. [CrossRef] [Google Scholar]
  16. Thong T D, Gan Lu, Nguyen, “Sparsity adaptive matching pursuit algorithm for practical compressed sensing [J],” in Proc. 2008 42nd Asilomar Conf, 2008, pp. 581–587. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.