Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 17001 | |
Number of page(s) | 10 | |
Section | Variable Amplitude Loading | |
DOI | https://doi.org/10.1051/matecconf/201930017001 | |
Published online | 02 December 2019 |
Influence of Material Ductility on Fatigue Life under Multiaxial Proportional and Non-Proportional Normal and Shear Stresses
Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany
Corresponding author: c.m.sonsino@lbf.fraunhofer.de
Current experiences show that a non-proportional loading of ductile materials such as wrought steels, wrought aluminium or magnesium alloys, not welded or welded, causes a significant fatigue life reduction under an out-of-phase shear strain or shear stress superimposed on a normal strain or normal stress compared with proportional in-phase loading. However, when ductility, here characterised by tensile elongation, is reduced by a heat treatment or by another manufacturing technology such as casting or sintering, the afore-mentioned life reduction is compensated or even inversed, i. e. longer fatigue life results compared with proportional loading. Some actual results, determined with additive manufactured titanium, suggest that microstructural features such as manufacturing-dependent internal defects like microporosities should be considered in addition to the ductility level. This complex life behaviour under non-proportional loading cannot always be estimated. Therefore, in experimental proofs of multiaxial loaded parts, especially safety-critical components or structures, with real or service-like signals, emphasis must be placed on retaining non-proportionalities between loads and stresses/strains, respectively.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.