Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 13003 | |
Number of page(s) | 9 | |
Section | Notch | |
DOI | https://doi.org/10.1051/matecconf/201930013003 | |
Published online | 02 December 2019 |
The contrast of simplicity and accuracy in modeling multiaxial notch fatigue
1
ZF Friedrichshafen AG, 88038 Friedrichshafen, Germany
2
Materials Mechanics Group, Technische Universität Darmstadt, Franziska-Braun-Straße 3, 64287 Darmstadt, Germany
* e-mail: christian.riess@zf.com
The fatigue assessment of notches under multiaxial and non-proportional service loading is challenging. Simple models (e.g. local strain approach based on normal stress and strain) are of poor quality for this general case of stress states and ductile material behavior. Advanced approaches show high accuracy, but require additional material testing and calibration. From an engineering point of view, deviations are tolerable to a certain extent. This contribution introduces two approaches for modeling multiaxial notch fatigue which are easy to apply. The first approach is an extension of the classical local strain approach. The second approach implements a simplified multiaxial notch approximation which enables the use of the extended short crack model in practical applications.
A large database with experiments on notched components under multiaxial stresses is set up and used to validate the proposed algorithms. Results show the effectiveness of both approaches for ductile steels. Both approaches can be useful for engineers who are faced to multiaxial fatigue of notched components.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.