Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 13003
Number of page(s) 9
Section Notch
DOI https://doi.org/10.1051/matecconf/201930013003
Published online 02 December 2019
  1. M. Fiedler, M. Wächter, A. Esderts, M. Vormwald, Richtlinie Nichtlinear [in German] (VDMA Verlag, Frankfurt a.M., 2019) [Google Scholar]
  2. M. Vormwald, O. Hertel, P. Zerres, Fatigue of engineering structures under combined nonproportional loads: An overview, Fatigue Fract. Eng. M. 41, 1449 (2018) [CrossRef] [Google Scholar]
  3. O. Hertel, M. Vormwald, Short-crack-growth-based fatigue assessment of notched components under multiaxial variable amplitude loading, Eng. Fract. Mech. 78, 1614 (2011) [CrossRef] [Google Scholar]
  4. O. Hertel, M. Vormwald, Multiaxial fatigue assessment based on a short crack growth concept, Theor. Appl. Fract. Mech. 73, 17 (2014) [CrossRef] [Google Scholar]
  5. Z. Hashin, Fatigue failure criteria for combined cyclic stress, Int. J. Fracture 17, 101 (1981) [CrossRef] [Google Scholar]
  6. H. Zenner, A. Simbürger, J. Liu, On the fatigue limit of ductile metals under complex multiaxial loading, Int. J Fatigue 22, 137 (2000) [CrossRef] [Google Scholar]
  7. K.N. Smith, P. Watson, T.H. Topper, A stress-strain function for the fatigue of metals, J. Mater. 5, 767 (1970) [Google Scholar]
  8. A. Fatemi, D.F. Socie, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. M. 11, 149 (1988) [CrossRef] [Google Scholar]
  9. C. Gaier, H. Dannbauer, An efficient critical plane method for ductile, semi-ductile and brittle materials, in Proceedings of 9th Int. Fatigue Congress, Atlanta (2006) [Google Scholar]
  10. C. Riess, W. Hiese, M. Obermayr, M. Vormwald, Engineering approaches to multi-axial and non-proportional fatigue of notched components, Materialwis. Werkst. 49, 381 (2018) [CrossRef] [Google Scholar]
  11. C. Riess, Vereinfachte Ansätze zur Lebensdaueranalyse gekerbter Bauteile unter mehrachsiger und nichtproportionaler Beanspruchung [in German], Ph.D. thesis, IfSW, TU Darmstadt (2019, to be published) [Google Scholar]
  12. H.J. Gough, Engineering steels under combined cyclic and static stresses, P. I. Mech. Eng. 160, 417 (1949) [Google Scholar]
  13. E. Tanaka, A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening, Eur. J. Mech. A-Solid 13, 155 (1994) [Google Scholar]
  14. K. Kanazawa, K.J. Miller, M.W. Brown, Cyclic deformation of 1% Cr-Mo-V steel under out-of-phase loads, Fatigue Fract. Eng. M. 2, 217 (1979) [CrossRef] [Google Scholar]
  15. J.E. Bishop, Characterizing the non-proportional and out-of-phase extent of tensor paths, Fatigue Fract. Eng. M. 23, 1019 (2000) [CrossRef] [Google Scholar]
  16. C. Riess, M. Obermayr, M. Vormwald, The non-proportionality of local stress paths in engineering applications, Frat. Integ. Strut. 10, 52 (2016) [Google Scholar]
  17. M.A. Meggiolaro, J.T.P. de Castro, An improved multiaxial rainflow algorithm for non-proportional stress or strain histories – Part I: Enclosing surface methods, Int. J. Fatigue 42, 217 (2012) [CrossRef] [Google Scholar]
  18. D.F. Socie, G.B. Marquis, Multiaxial fatigue (SAE, Warrendale PA, 2000) [Google Scholar]
  19. N. Ohno, J.D. Wang, Kinematic hardening rules for simulation of ratchetting behavior, Eur. J. Mech. A-Solid 13, 519 (1994) [Google Scholar]
  20. J. Hoffmeyer, Anrisslebensdauervorhersage bei mehrachsiger Beanspruchung auf Basis des Kurzrisskonzepts [in German], Ph.D. thesis, IfSW, TU Darmstadt (2005) [Google Scholar]
  21. R. Rennert, E. Kullig, M. Vormwald, A. Esderts, D. Siegele, Analytical strength assessment 6.th Edition (VDMA Verlag, Frankfurt a.M., 2012) [Google Scholar]
  22. H. Hanselka, R. Franz, P. Xin, A. Esderts, Mehrachsigkeit [in German] (VDMA Verlag, Frankfurt a.M., 2013) [Google Scholar]
  23. O. Hertel, Prognose der Anrisslebensdauer gekerbter Bauteile bei mehrachsig nichtproportionaler Betriebsbelastung [in German], Ph.D. thesis, IfSW, TU Darmstadt (2016) [Google Scholar]
  24. A. Simbürger, Festigkeitsverhalten zäher Werkstoe bei einer mehrachsigen, phasenverschobenen Schwingbeanspruchung mit körperfesten und veränderlichen Hauptspannungsrichtungen [in German], Ph.D. thesis, Fraunhofer LBF, Darmstadt (1975) [Google Scholar]
  25. K. Pötter, Lebensdauerabschätzung ein-und mehrachsig schwingend beanspruchter Bauteile [in German], Ph.D. thesis, IMAB, TU Clausthal (2000) [Google Scholar]
  26. P. Kurath, S.D. Downing, D.R. Galliart, Multiaxial fatigue: Analysis and experiments (SAE, Warrendale PA, 1989) [Google Scholar]
  27. B. Atzori, F. Berto, P. Lazzarin, M. Quaresimin, Multi-axial fatigue behaviour of a severely notched carbon steel, Int. J. Fatigue 28, 485 (2006) [CrossRef] [Google Scholar]
  28. F. Berto, P. Lazzarin, C. Marangon, Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading, Mater. Design 54, 57 (2014) [CrossRef] [Google Scholar]
  29. T.M. Fesich, Festigkeitsnachweis und Lebensdauerberechnung bei komplex mehrachsiger Schwingbeanspruchung [in German], Ph.D. thesis, IMWF, Universität Stuttgart (2012) [Google Scholar]
  30. R. Döring, J. Hoffmeyer, T. Seeger, M. Vormwald, A plasticity model for calculating stress-strain sequences under multiaxial nonproportional cyclic loading, Comp. Mater. Sci. 28, 587 (2003) [CrossRef] [Google Scholar]
  31. M. Barkey, D. Socie, K. Hsia, A yield surface approach to the estimation of notch strains for proportional and nonproportional cyclic loading, J. Eng. Mater. Technol. 116, 173 (1994) [CrossRef] [Google Scholar]
  32. V.B. Köttgen, M.E. Barkey, D.F. Socie, Pseudo stress and pseudo strain based approaches to multiaxial notch analysis, Fatigue Fract. Eng. M. 18, 981 (1995) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.