Issue |
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 6 | |
Section | Advanced Welding Processes | |
DOI | https://doi.org/10.1051/matecconf/201926902005 | |
Published online | 22 February 2019 |
Influence of Thermal Aging on Microstructure and Property of Gold Alloy Joint Soldered by Sn-based Solder
School of Mechanical Engineering and Automation, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, 100191, PR China
Corresponding author: quwenqing@buaa.edu.cn
As an undisputed material of choice to guarantee reliability in a broad range of high performance and safety-critical applications in the electrical contacts and connectors, AuAgCu alloy was soldered with Ag-plated Cu wire using Sn-based solder. To clarify the embrittlement and strength reduction of the gold soldered joint, the microstructure and its influence on the macroand micro-mechanical properties of the soldered joint under various thermal aging conditions were studied. The result indicated that, taking the mechanical property consideration alone, Sn-based solder could be used to join AuAgCu alloy. Different from the embrittlement and strength reduction of the soldered joint of pure gold, although the brittle fracture features appeared in mechanical test of the soldered joints, the shear strength of soldered joint after thermal aging at 125 °C almost did not decrease in comparison with that before thermal aging. Nevertheless, too high temperature and long time still had bad influence on mechanical properties. Otherwise, thermal aging had a large effect on the IMCs layer, as aging temperature elevated and aging time increased, IMCs layer became thicker, more complex components and multiply-sublayers structure with different microhardness. The study provides a fundamental understanding for gold alloy soldering.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.