Issue |
MATEC Web Conf.
Volume 230, 2018
7th International Scientific Conference “Reliability and Durability of Railway Transport Engineering Structures and Buildings” (Transbud-2018)
|
|
---|---|---|
Article Number | 02022 | |
Number of page(s) | 7 | |
Section | Structures, Buildings and Facilities | |
DOI | https://doi.org/10.1051/matecconf/201823002022 | |
Published online | 16 November 2018 |
Investigation of the regularities of temperature regime of fire in cable tunnels depending on its parameters
1
Cherkassy Institute of Fire Safety named after Chernobyl Heroes National University of Civil Defence of Ukraine, Onoprienka, 8, Cherkassy, 18000, Ukraine
2
Ukrainian Civil Protection Research Institute, Rybalska, 18, Kyiv, 01001, Ukraine
* Corresponding author: nuyanzin@i.ua
Simulation, as a method of scientific research, makes it possible, without performing costly and labor-intensive field experiments on models, to carry out all necessary experiments to determine the temperature modes of fire in cable tunnels. The purpose of the research of this work was to determine the temperature regime of fire in a cable tunnel depending on its shape, size and fire load. Mathematical models of cable tunnels were created in one of the CFD software systems. Cable products are constantly evolving and improving. For tests on the fire resistance of building structures of cable tunnels, a standard temperature mode of fire is used which may not correspond to fire mode in a real cable tunnel. The computational experiments were carried out and the temperature regimes of fires in tunnels with different parameters were determined. The obtained results showed the parameters of cable tunnels, which influence the temperature regime of fire in tunnels most. In this paper the use of computational experiments for the study of heat and mass transfer processes in fires in cable tunnels was examined further. CFD Fire Dynamics Simulator 6.2 was used.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.