Issue |
MATEC Web Conf.
Volume 208, 2018
2018 3rd International Conference on Measurement Instrumentation and Electronics (ICMIE 2018)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 5 | |
Section | Power Engineering and System Modeling | |
DOI | https://doi.org/10.1051/matecconf/201820804003 | |
Published online | 26 September 2018 |
Modeling and simulation for low-frequency vibration energy harvesting based on piezoelectric unimorph cantilever beam
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No.3 Shangyuancun Haidian District, 100044, Beijing, China
In order to solve the problem of sustainable energy supply for low-power electronic products used in low-frequency vibration environment, the mathematic model was established based on the theory of piezoelectricity and Euler-Bernoulli beam. Also, the effects of different parameters of PZT unimorph beams such as the length, width, and tip mass on generating capacity were studied by FEM. The results show that the energy harvester with PZT unimorph beam and tip mass is suitable for low-frequency vibration environment. Increasing the length or reducing the width of the beam can significantly lower the first-order modal frequency of energy harvester when other conditions remain the same. Within certain range, the first-order modal frequency of the beam also gradually reduced as the tip mass increasing. When the size of the PZT unimorph beam is 60x60x0.33mm, the tip mass is 8.92g and an exciting force of 0.01N is applied to it along z axis, an output of 8.1V can be obtained. Meanwhile, the PZT unimorph beam is under the first vibration mode and the resonant frequency is 16.296Hz.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.