Issue |
MATEC Web of Conferences
Volume 172, 2018
3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS 2018)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 8 | |
Section | Design Engineering | |
DOI | https://doi.org/10.1051/matecconf/201817203009 | |
Published online | 12 June 2018 |
Parametric study on free vibration and instability of a functionally graded cracked shaft in a rotor-disc-bearing system: finite element approach
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
* Corresponding author: d.gayen@iitg.ernet.in
Free vibration and stability analysis are studied for a rotor-disk-bearing system having a radially functionally graded (FG) shaft with a transversely fully open crack, based on finite element (FE) approach. Both viscous and hysteretic internal damping are incorporated in the FE model of FG cracked shaft using two nodded Timoshenko beam element having four degrees of freedom (DOFs) at each node. Material properties of the FG cracked shaft are assumed temperature dependent and graded along radial direction following different material gradation law. FG shaft is made of two constituents material namely zirconia (ZrO2) and stainless steel (SS) where metallic (SS) contain is decreasing towards the outer diameter of the shaft. Extended Hamilton’s principle is employed to derive the system equations of motion (EOMs) of the FG cracked shaft system. A complete code is developed in MATLAB for correcting the formulation of modeling of crack and verified with existing published results. Influences of different material gradient index, temperature gradients, size and location of crack, viscous and hysteretic internal damping, slenderness ratio, and boundary condition on dynamic responses of the FG cracked shaft system are studied.
Key words: FG cracked shaft / Stability threshold speed / Material gradient index / Temperature dependent material property
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.