Issue |
MATEC Web Conf.
Volume 128, 2017
2017 International Conference on Electronic Information Technology and Computer Engineering (EITCE 2017)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 5 | |
Section | Simulation Model and Algorithm | |
DOI | https://doi.org/10.1051/matecconf/201712802002 | |
Published online | 25 October 2017 |
Simulation and Analysis of Passive Rolling Compensation of High Sea Salvage System
1 Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Science, Shanghai 200092, China
2 Joint Research Laboratory for Deep Blue Fishery Engineering Equipment Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
a Corresponding author: linliqun@fmiri.ac.cn
Method and device of a flexible interception and salvage system was introduced in this paper. In order to study the effect of wave motion on salvage operation, we proposed a passive wave compensation scheme that utilizes a combination of variable-pitch cylinders and accumulators, and established the mathematical vibration model of the rolling motion of the salvage compensation system. With the relationships between the stiffness coefficient and the accumulator parametric of passive compensated gas-liquid system, we determined the effective compensation stiffness range through Mathematica simulation analysis. The relationship between the roll displacement of the salvage arm and the initial volume Vo of the accumulator has been analysed. The results show that the accumulatorVo in a certain range has a great influence on the passive compensation. However, when the volume is greater than 20m3, the compensation effect is weakened, and tend to a certain value, irrespective of the passive system accumulator volume capacity, it does not achieve full compensation. The results have important guidance on the design and optimization of rolling passive compensation of the practical high sea salvage system.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.